por blaze » Ter Jun 03, 2014 15:43
Olá.
Estava a estudar equações trigonométricas quando me lembrei de uma questão. Resolver equações do tipo

é fácil, mas quando há mais do que um cosseno, por exemplo,

o problema fica mais difícil. Andei à procura pela net mas não encontro nada que me explique esta última equação; alguém me pode ajudar/ensinar?
-
blaze
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Qua Mai 07, 2014 17:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Ter Jun 03, 2014 20:46
Blaze, a princípio, acho que podes aplicar

.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por blaze » Ter Jun 03, 2014 20:52
Isso iria dar-me uma outra igualdade mais complicada de resolver:

-
blaze
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Qua Mai 07, 2014 17:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Ter Jun 03, 2014 20:56

Sabemos que

Resolva o sistema,

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por blaze » Ter Jun 03, 2014 21:29
Sim, é isso mesmo. Vai dar um ângulo do 2ºQ mas temos que igualar ao 3ºQ por causa da geometria do círculo trigonométrico.
Obrigado
-
blaze
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Qua Mai 07, 2014 17:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lei dos Cossenos
por Joseaugusto » Ter Mar 06, 2012 11:43
- 4 Respostas
- 2813 Exibições
- Última mensagem por Joseaugusto

Ter Mar 06, 2012 22:42
Trigonometria
-
- Lei dos cossenos
por kandara » Qua Abr 30, 2014 17:35
- 1 Respostas
- 4469 Exibições
- Última mensagem por Russman

Qua Abr 30, 2014 18:54
Trigonometria
-
- UFSCar - Lei dos cossenos
por brunocav » Seg Mai 30, 2011 18:16
- 2 Respostas
- 10431 Exibições
- Última mensagem por brunocav

Seg Mai 30, 2011 19:23
Trigonometria
-
- LEI DOS SENOS E COSSENOS
por MERLAYNE » Qua Abr 25, 2012 20:36
- 1 Respostas
- 1719 Exibições
- Última mensagem por Russman

Qua Abr 25, 2012 21:26
Trigonometria
-
- Multiplicação de cossenos
por anfran1 » Sex Jun 29, 2012 10:39
- 5 Respostas
- 4964 Exibições
- Última mensagem por Arkanus Darondra

Dom Jul 01, 2012 12:48
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.