por Victor Mello » Dom Mai 25, 2014 16:48
Galera, eu estava tentando resolver essa integral dupla

, onde a região se localiza no primeiro quadrante e é limitada pelo círculo

.
Bom, parece que é simples essa integral, mas infelizmente eu não consegui progredir o raciocínio. No começo até eu consegui reconhecer a região limitada, ou seja, o raio é 5 segundo a equação, e o intervalo do ângulo só pode estar entre 0 e

, já que a região está no primeiro quadrante, até aí tudo bem. Na hora de converter para coordenadas polares, ficou assim:

, e na hora de integrar em relação a

, deu

pois o

se comporta como uma constante para esse caso. Assim, caiu uma integral por partes , mas parece que não deu certo, pois na hora de chamar a

de

e derivar, vai ficar

o

, e muito menos integrar o

. Será que tem outro método que simplifique isso, ou é inevitável? Enfim, se alguém puder me ajudar, eu agradeço desde já!

Obrigado!
-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Coordenadas Polares
por Questioner » Sáb Jul 17, 2010 14:54
- 2 Respostas
- 4195 Exibições
- Última mensagem por Questioner

Sáb Jul 17, 2010 18:37
Geometria Analítica
-
- Coordenadas Polares
por Bruhh » Seg Mar 21, 2011 15:39
- 4 Respostas
- 4040 Exibições
- Última mensagem por Bruhh

Ter Mar 22, 2011 14:22
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas polares
por suziquim » Seg Mai 16, 2011 17:31
- 2 Respostas
- 1845 Exibições
- Última mensagem por suziquim

Ter Mai 17, 2011 11:15
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas polares
por manuoliveira » Ter Nov 20, 2012 09:03
- 1 Respostas
- 1794 Exibições
- Última mensagem por MarceloFantini

Ter Nov 20, 2012 09:57
Cálculo: Limites, Derivadas e Integrais
-
- [coordenadas polares]
por FERNANDA_03 » Qui Jul 11, 2013 23:10
- 2 Respostas
- 2711 Exibições
- Última mensagem por FERNANDA_03

Sex Jul 26, 2013 09:58
Cálculo
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.