• Anúncio Global
    Respostas
    Exibições
    Última mensagem

EQUAÇÕES FRACIONARIAS DO 2° GRAU [AJUDA URGENTE!!!]

EQUAÇÕES FRACIONARIAS DO 2° GRAU [AJUDA URGENTE!!!]

Mensagempor rayanne_ » Ter Mai 13, 2014 00:43

[/table] Não consegui responder mesmo após varias tentativas o seguinte problema:Rubinho fez uma viagem de 200km a uma velocidade média de 96km/h.Nos primeiros 100km,numa rodovia melhor,sua velocidade média foi 40km/h a mais do que no restante do percurso.


a)quanto tempo durou a viagem?


b)Qual foi a velocidade média nos primeiros 100km?

Eu fiz da seguinte maneira:100/(x+40)+100/x=200/96,calculei mmc dos denominadores,mas no fim da conta deu números muito altos e me perdi completamente!!!!
rayanne_
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 12, 2014 23:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: ADM
Andamento: cursando

Re: EQUAÇÕES FRACIONARIAS DO 2° GRAU [AJUDA URGENTE!!!]

Mensagempor Russman » Qua Mai 14, 2014 00:54

O enunciado fornece a distância total percorrida e a velocidade média deste percurso. Da definição de velocidade média temos que o tempo total de percurso T deve ser tal que

\frac{200}{T}=96.

Ou seja, T=\frac{200}{96} = \frac{25}{12} h.

Agora, supondo que ele demorou t_1 h para percorrer os 100 primeiros kilometros numa velocidade média v_1 e t_2 h pra percorrer os outros 100 km numa velocidade média v_2, então

v_1 = \frac{100}{t_1}(i)
v_2 = \frac{100}{t_2}(ii)

Mas, sabemos que (iii)t_1+t_2 = \frac{25}{12} e que (iv)v_2 + 40 = v_1.

Partindo de (iii) como você fez, substituindo as relações de (i) e (ii), temos

t_1 + t_2 = \frac{25}{12}
\frac{100}{v_1}+ \frac{100}{v_2} = \frac{25}{12}

Multiplicando toda equação por 12v_1v_2 vem que

1200v_2 + 1200v_1 = 25v_1v_2.

Usando a eq. (iv) para isolar v_1 teremos a equação acima transformada em uma equação somente em v_2. Veja:

1200v_2 + 1200v_1 = 25v_1v_2
1200v_2 + 1200(v_2+40) = 25(v_2+40)v_2
2400v_2 + 48000 = 25v_2^2 + 1000v_2
25v_2^2 -1400v^2-48000=0

Dividindo toda equação por 25 temos, finalmente,

v_2^2 - 56v_2 -1920=0

Esta é a equação. Resolvendo, encontramos v_2=80 ou v_2=-24. Já que tratamos a velocidade média como sendo positiva, a 1° solução é a que usaremos.

Daí, se v_2 = 80 km/h então v_1 = 120 km/h.

Esta é uma forma de resolver o problema.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D