• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação na Circunferência

Equação na Circunferência

Mensagempor Fernandobertolaccini » Dom Mai 11, 2014 14:48

03) Determine as equações das retas paralelas à reta y = ?10 e tangentes à circunferência cuja
equação é (x-2)² + (y+3)² = 9

Resp: y = 0 e y = ?6

Encontre a soma das coordenadas do centro da circunferência que passa pelos pontos ( 1,0 ),
( 2,1 ) e ( 8,1 ).
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Equação na Circunferência

Mensagempor jcmatematica » Sex Set 26, 2014 10:26

Fernandobertolaccini escreveu:03) Determine as equações das retas paralelas à reta y = ?10 e tangentes à circunferência cuja
equação é (x-2)² + (y+3)² = 9

Resp: y = 0 e y = ?6

Encontre a soma das coordenadas do centro da circunferência que passa pelos pontos ( 1,0 ),
( 2,1 ) e ( 8,1 ).


3)
Circunferencia tem cetro C(2, -3) e raio r = 3.

Logo, uma reta tangente a circunferencia deve estar a uma distancia de 3 unidades do centro desta.
Como a reta de referencia e de uma funcao costante, as retea paralelas a ela tambem devem ser constantes.

Observe que o centro e -3 no eixo das ordenadas. considerando um raio de tres unidades, sabemos que uma das retas
passa em y = - 6.

A outra reta, acima da circunferencia passa por y = 0.

Resposta
y = 0
y = - 6


Espero ter ajudado.
jcmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Ter Jul 29, 2014 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59