por phfrito » Qui Mai 08, 2014 19:26
Minha dúvida esta no angulo de resolução de 2 problemas.
1º

Eu resolvi substituindo o limite primeiramente, ficou:

que diante de meus conhecimentos (corriga se eu estiver errado) é igual a

. No entanto o gabarito simplifca a equação deixando o X em evidencia resultando em

. Se eu estiver correto, porque simplificar a equação?
2º Nao consegui resolver a raiz de limite
![\lim_{x->\infty} \sqrt[]{x} \lim_{x->\infty} \sqrt[]{x}](/latexrender/pictures/b51b152a21547dcc545f8994b6e3b589.png)
Tudo que eu sei sobre as operações básicas entre limites é que podemos multiplicar, dividir, somar e subtrair limites somente com jogo de sinais, a unica inderterminação seria

e

.
alguma objeção?
obrigado pela atenção! ph
-
phfrito
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Mai 07, 2014 23:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por Russman » Qui Mai 08, 2014 23:02
No 1° caso você obtém por substituição direta de

por

uma indeterminação do tipo

. Ou seja, o limite da função, certamente, é um número. Porém, você não conseguirá calculá-lo da forma que está fazendo. Então, nessas situações, a saída é simplifica a função de modo a obtermos esse número indeterminado a princípio. De fato, se você divide o numerador e denominador por

vai obter tanto no primeiro quanto no último uma parcela do tipo

que, no limite

, resulta em

e se obtém a resposta do limite com as parcelas restantes.
No 2° caso quando você substitui

por

obtém, de imediato,

. Este, por sua vez, não é uma indeterminação. Assim, este deve ser o resultado do limite.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por phfrito » Sex Mai 09, 2014 14:26
Vi um video na internet que infinito divido por infinito ( se ambos forem positivos) o resultado é infinito?!
-
phfrito
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Mai 07, 2014 23:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por e8group » Sex Mai 09, 2014 14:36
Falso . Basta tomar um contra-exemplo ,

e

. É claro que

.Logo para qualquer que seja

, tem-se

. E além disso , o limite de ambas funções no infnito é

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Sex Mai 09, 2014 14:54
phfrito escreveu:Vi um video na internet que infinito divido por infinito ( se ambos forem positivos) o resultado é infinito?!
Depende da situação. A função

, por exemplo. Se tomarmos o limite

vamos obter, de imediato,

. Como é uma indeterminação precisamos investigar melhor esse limite. Fazendo isso constatamos que, na verdade, essa função tende a

. Quando é indeterminação tudo pode acontecer! kkk Mas, os casos mais famosos são pra limites para números reais como no exemplo do santhiago!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITES] Dúvida em questão de Limites no infinito
por Jacques » Ter Jul 12, 2016 21:42
- 4 Respostas
- 7308 Exibições
- Última mensagem por vitor_jo

Qua Jul 13, 2016 16:51
Cálculo: Limites, Derivadas e Integrais
-
- [limites no infinito]Limite no infinito de um ponto finito
por moyses » Ter Ago 30, 2011 12:45
- 3 Respostas
- 3371 Exibições
- Última mensagem por LuizAquino

Ter Ago 30, 2011 18:57
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4574 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
-
- Limites no infinito
por felipe_ad » Sáb Abr 24, 2010 15:00
- 3 Respostas
- 5391 Exibições
- Última mensagem por MarceloFantini

Dom Abr 25, 2010 02:27
Cálculo: Limites, Derivadas e Integrais
-
- Limites no infinito
por jr_freitas » Sex Out 07, 2011 16:55
- 10 Respostas
- 9733 Exibições
- Última mensagem por Claudin

Sáb Out 08, 2011 20:03
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.