• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integral de linha?

[Integral] Integral de linha?

Mensagempor KleinIll » Dom Mai 04, 2014 04:04

Por favor, ajude-me!!!

* Partículas movem-se no plano sob a ação do campo de velocidades V(x,y) = 2,3x². A trajetória (x(t), y(t)) da partícula que no instante t = 0 passa no ponto (0,1), em que ponto estará no instante t = 2?

Por gentileza, se puder postar a resolução explicada, será de grande ajuda.

Obrigado!
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor Russman » Dom Mai 04, 2014 18:52

Parametriza a velocidade, integra com relação ao tempo, usa o ponto conhecido pra determinar as constante de integração e aplica a função em t=2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor KleinIll » Dom Mai 04, 2014 23:38

Oi?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor KleinIll » Ter Mai 06, 2014 10:54

V(x,y) = (2, 3x²)
x(t) = \int_{}^{}2dt = 2t + {c}_{1}
x(0) = 2*0 + {c}_{1}; x(0) = 0
{c}_{1} = 0
x(t) = 2t

y(t) = \int_{}^{}3{x}^{2}dt = \int_{}^{}3{(2t)}^{2}dt = \int_{}^{}12{t}^{2}dt = 4{t}^{3} + {c}_{2}
y(0) = 4*{0}^{3} + {c}_{2}; y(0) = 1
{c}_{2} = 1
y(t) = 4{t}^{3} + 1

x(t) = 2t
y(t) = 4{t}^{3} + 1

t = 2
x(2) = 2*2 = 4
y(2) = 4*{2}^{3} + 1 = 33

t = 2, a posição é (4,33)

Esta resolução está correta?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor Russman » Ter Mai 06, 2014 18:32

Exatamente.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor KleinIll » Ter Mai 06, 2014 19:07

Russman escreveu:Exatamente.


Obrigado.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.