• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integral de linha?

[Integral] Integral de linha?

Mensagempor KleinIll » Dom Mai 04, 2014 04:04

Por favor, ajude-me!!!

* Partículas movem-se no plano sob a ação do campo de velocidades V(x,y) = 2,3x². A trajetória (x(t), y(t)) da partícula que no instante t = 0 passa no ponto (0,1), em que ponto estará no instante t = 2?

Por gentileza, se puder postar a resolução explicada, será de grande ajuda.

Obrigado!
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor Russman » Dom Mai 04, 2014 18:52

Parametriza a velocidade, integra com relação ao tempo, usa o ponto conhecido pra determinar as constante de integração e aplica a função em t=2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor KleinIll » Dom Mai 04, 2014 23:38

Oi?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor KleinIll » Ter Mai 06, 2014 10:54

V(x,y) = (2, 3x²)
x(t) = \int_{}^{}2dt = 2t + {c}_{1}
x(0) = 2*0 + {c}_{1}; x(0) = 0
{c}_{1} = 0
x(t) = 2t

y(t) = \int_{}^{}3{x}^{2}dt = \int_{}^{}3{(2t)}^{2}dt = \int_{}^{}12{t}^{2}dt = 4{t}^{3} + {c}_{2}
y(0) = 4*{0}^{3} + {c}_{2}; y(0) = 1
{c}_{2} = 1
y(t) = 4{t}^{3} + 1

x(t) = 2t
y(t) = 4{t}^{3} + 1

t = 2
x(2) = 2*2 = 4
y(2) = 4*{2}^{3} + 1 = 33

t = 2, a posição é (4,33)

Esta resolução está correta?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor Russman » Ter Mai 06, 2014 18:32

Exatamente.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral] Integral de linha?

Mensagempor KleinIll » Ter Mai 06, 2014 19:07

Russman escreveu:Exatamente.


Obrigado.
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)