• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Ter Abr 29, 2014 22:50

\int      e^(2x)   cos x dx


pessoal u achei uma resposta mais alguns colegas me auxiliaram que eu deveria resolver por partes
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor alienante » Qua Abr 30, 2014 09:24

eu fiz por partes, não enxerguei outra forma mais simples pelo menos:\int_{}^{}{e}^{2x}cos(x)dx, chamando a=cos(x) , e db={e}^{2x}dx e usando o fato de que da=(-sin(x))dx e\int_{}^{}db=\frac{{e}^{2x}}{2}+c temos que(1)\left[ \int_{}^{}adb=ab-\int_{}^{}bda\rightarrow \int_{}^{}{e}^{2x}sin(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{1}{2} \int_{}^{}{e}^{2x}sin(x)dx, se chamarmos c=sin(x) e dd={e}^{2x}dx teremos:(2)\left[\int_{}^{}cdd=cd-\int_{}^{}ddc\rightarrow \int_{}^{}{e}^{2x}sin(x)dx=\frac{sin(x){e}^{2x}}{2}-\frac{1}{2}\int_{}^{}{e}^{2x}cos(x)dx, substituindo (2) em (1) teremos:\int_{}^{}{e}^{2x}cos(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{sin(x){e}^{2x}}{4}-\frac{1}{4}\int_{}^{}{e}^{2x}cos(x)dx\rightarrow \frac{5}{4}\int_{}^{}{e}^{2x}cos(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{sin(x){e}^{2x}}{4}+c\rightarrow \int_{}^{}{e}^{2x}cos(x)dx=\frac{2cos(x){e}^{2x}}{5}+\frac{sin(x){e}^{2x}}{5}+c
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.