• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Ter Abr 29, 2014 22:50

\int      e^(2x)   cos x dx


pessoal u achei uma resposta mais alguns colegas me auxiliaram que eu deveria resolver por partes
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor alienante » Qua Abr 30, 2014 09:24

eu fiz por partes, não enxerguei outra forma mais simples pelo menos:\int_{}^{}{e}^{2x}cos(x)dx, chamando a=cos(x) , e db={e}^{2x}dx e usando o fato de que da=(-sin(x))dx e\int_{}^{}db=\frac{{e}^{2x}}{2}+c temos que(1)\left[ \int_{}^{}adb=ab-\int_{}^{}bda\rightarrow \int_{}^{}{e}^{2x}sin(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{1}{2} \int_{}^{}{e}^{2x}sin(x)dx, se chamarmos c=sin(x) e dd={e}^{2x}dx teremos:(2)\left[\int_{}^{}cdd=cd-\int_{}^{}ddc\rightarrow \int_{}^{}{e}^{2x}sin(x)dx=\frac{sin(x){e}^{2x}}{2}-\frac{1}{2}\int_{}^{}{e}^{2x}cos(x)dx, substituindo (2) em (1) teremos:\int_{}^{}{e}^{2x}cos(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{sin(x){e}^{2x}}{4}-\frac{1}{4}\int_{}^{}{e}^{2x}cos(x)dx\rightarrow \frac{5}{4}\int_{}^{}{e}^{2x}cos(x)dx=\frac{cos(x){e}^{2x}}{2}+\frac{sin(x){e}^{2x}}{4}+c\rightarrow \int_{}^{}{e}^{2x}cos(x)dx=\frac{2cos(x){e}^{2x}}{5}+\frac{sin(x){e}^{2x}}{5}+c
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}