por leticia_08 » Sáb Abr 19, 2014 20:12
Olá, gostaria de tirar uma dúvida.
Se possuo uma sequência an, tal que an>0 para todo n>=0, e \Sigma an diverge, então mostre que \Sigma an/(an+1) também diverge.
Tentei separar a série em uma soma de duas outras séries, mas acabou não dando certo. Alguém poderia ajudar ??
Obrigada !!
-
leticia_08
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Abr 19, 2014 20:06
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Sáb Abr 19, 2014 22:19
Boa noite leticia_08 . Por favor , sempre utilize o LaTeX . É difícil entender as expressões , não entendo se vc quer dizer

ou

. Vamos considerar que estamos no segundo caso .
Pensei em provar por contradição , o que acha ?
Denote

e

onde

.
Se

converge então

. Segue-se,

.
Logo

e assim

.
Desde que

diverge e

, não podemos ter

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Dom Abr 20, 2014 00:29
Se

é divergente então

que é menor que

tem de divergir também. Não? :|
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por e8group » Dom Abr 20, 2014 00:41
Sim a desigualdade é verdadeira . Mas como prova partindo dela ? Comparação direta ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Dom Abr 20, 2014 00:58
Eu pensei em comparação. Claro que se

e

é convergente, então

também é. Da mesma forma, se

é divergente então

também. Mas sabemos que

é divergente. Não sei se na última afirmação vale a recíproca.
A comparação no limite, acho eu, é inconclusiva pq não quer dizer que o limite de

é não-nulo só pq

é divergente. Pode ser que sim, né.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por e8group » Dom Abr 20, 2014 11:49
Tem razão Russman , o limite é inconclusivo , fácil encontrar contra-exemplos .

e

.
Pensei em trabalhar com

ilimitado e limitado .
No primeiro caso

, logo

diverge .
No segundo caso , temos que existe

tal que

(a_n é limitado inferiormente por 0 e superiormente por M ) . Daí segue

. Como

é uma constante , então a série

também diverge que por sua vez , a sua divergência implica a de

.
O que acham ??
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Russman » Dom Abr 20, 2014 13:42
Acho que a demonstração está coerente, santhiago. De sorte que os termos são todos positivos. ;D
Bom artifício quebrar a comparação dessa forma.
Editado pela última vez por
Russman em Dom Abr 20, 2014 13:44, em um total de 1 vez.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Dom Abr 20, 2014 13:42
.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Divergência] Dúvida em Divergência de campos vetoriais
por Lucasoaresf » Dom Set 14, 2014 16:26
- 0 Respostas
- 1100 Exibições
- Última mensagem por Lucasoaresf

Dom Set 14, 2014 16:26
Cálculo: Limites, Derivadas e Integrais
-
- [Séries] Sobre simplicação de expressões em séries
por HenriqueOrlan » Sáb Nov 21, 2015 11:28
- 1 Respostas
- 3593 Exibições
- Última mensagem por adauto martins

Qua Nov 25, 2015 16:31
Sequências
-
- [Séries] Série convergente ou divergente?
por RafaelPereira » Ter Jun 18, 2013 13:31
- 2 Respostas
- 2272 Exibições
- Última mensagem por RafaelPereira

Ter Jun 18, 2013 17:49
Sequências
-
- [Séries] Há uma fórmula explicita para esta série?
por Rilke » Sáb Out 13, 2012 13:42
- 5 Respostas
- 2346 Exibições
- Última mensagem por Rilke

Dom Out 14, 2012 16:50
Sequências
-
- [Série de potÊncia] Expansão de séries de potência
por Adonias 7 » Qua Jun 01, 2016 09:05
- 0 Respostas
- 3542 Exibições
- Última mensagem por Adonias 7

Qua Jun 01, 2016 09:05
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.