• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Séries] Dúvida sobre divergência de série

[Séries] Dúvida sobre divergência de série

Mensagempor leticia_08 » Sáb Abr 19, 2014 20:12

Olá, gostaria de tirar uma dúvida.
Se possuo uma sequência an, tal que an>0 para todo n>=0, e \Sigma an diverge, então mostre que \Sigma an/(an+1) também diverge.

Tentei separar a série em uma soma de duas outras séries, mas acabou não dando certo. Alguém poderia ajudar ??
Obrigada !!
leticia_08
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 19, 2014 20:06
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor e8group » Sáb Abr 19, 2014 22:19

Boa noite leticia_08 . Por favor , sempre utilize o LaTeX . É difícil entender as expressões , não entendo se vc quer dizer

\sum \frac{a_n}{a_{n+1}} ou \sum \frac{a_n}{a_n +1} . Vamos considerar que estamos no segundo caso .

Pensei em provar por contradição , o que acha ?

Denote S = \sum a_n e S '= \sum b_n onde b_n = \frac{a_n}{a_n +1} .

Se S' converge então lim(b_n) = 0 . Segue-se,

0 = lim(b_n) = lim \left(1  -  \frac{1}{a_n +1} \right) =  1 - lim  \left(\frac{1}{a_n +1} \right) .

Logo \left(\frac{1}{a_n +1} \right) = 1 e assim lim(a_n) = 0 .

Desde que S diverge e a_n > 0 \forall n , não podemos ter lim(a_n) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 00:29

Se a_n é divergente então \frac{a_n}{a_n + 1} que é menor que a_n tem de divergir também. Não? :|
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Séries] Dúvida sobre divergência de série

Mensagempor e8group » Dom Abr 20, 2014 00:41

Sim a desigualdade é verdadeira . Mas como prova partindo dela ? Comparação direta ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 00:58

Eu pensei em comparação. Claro que se b_n < a_n e a_n é convergente, então b_n também é. Da mesma forma, se b_n é divergente então a_n também. Mas sabemos que a_n é divergente. Não sei se na última afirmação vale a recíproca.

A comparação no limite, acho eu, é inconclusiva pq não quer dizer que o limite de a_n é não-nulo só pq a_n é divergente. Pode ser que sim, né.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Séries] Dúvida sobre divergência de série

Mensagempor e8group » Dom Abr 20, 2014 11:49

Tem razão Russman , o limite é inconclusivo , fácil encontrar contra-exemplos .

1/n > 0  \forall n > 1  ,  lim(1/n) = 0 e \sum_{1} 1/n = +\infty .

Pensei em trabalhar com a_n ilimitado e limitado .

No primeiro caso lim(a_n) = +\infty , logo \lim(b_n) = 1 \neq 0 \implies   \sum b_n diverge .

No segundo caso , temos que existe M > 0 tal que 0< a_n \leq  M (a_n é limitado inferiormente por 0 e superiormente por M ) . Daí segue

a_n + 1 \leq  M + 1  \implies  \frac{1}{a_n +1} \geq  \frac{1}{M+ 1} \implies   \frac{a_n}{a_n +1} \geq  \frac{1}{M+ 1} a_n . Como \frac{1}{M+ 1} é uma constante , então a série \sum   \frac{a_n}{M+ 1} também diverge que por sua vez , a sua divergência implica a de \sum \frac{a_n}{a_n +1} .

O que acham ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 13:42

Acho que a demonstração está coerente, santhiago. De sorte que os termos são todos positivos. ;D
Bom artifício quebrar a comparação dessa forma.
Editado pela última vez por Russman em Dom Abr 20, 2014 13:44, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Séries] Dúvida sobre divergência de série

Mensagempor Russman » Dom Abr 20, 2014 13:42

.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?