• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio das funções

Domínio das funções

Mensagempor kellykcl » Qui Abr 10, 2014 20:18

Boa noite galera do fórum!
Mais uma vez precisando da ajuda de vocês!

Determine o domínio das seguintes funções:

1) f(x)=\frac{1}{\sqrt[]{9-{x}^{2}}}

9-{x}^{2}>0

-{x}^{2}+9=0

-{x}^{2}=-9

x=\sqrt[]{9}

x=\pm 3
Imagem

D(f)= \left|x\,\epsilon\,\Re\,\prime\,-3<x<3 \right|


2)f(x)= \frac{\sqrt[]{{x}^{2}+x}}{{x}^{2}+x}

Gabarito: D(f)=  \left| x\, \epsilon\, R / x< -1\, ou\, x>0\right|

Obs.:Não sei como resolver esta última questão, como o denominador tem que ser \neq 0, não estou sabendo esboçar o gráfico! *-)
Gostaria de saber se a primeira está correta (não tenho gabarito) e também como fazer a segunda incluindo o gráfico!

Desde já agradeço a colaboração!
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado

Re: Domínio das funções

Mensagempor Lucio Carvalho » Qui Abr 10, 2014 21:39

Ola kellykcl,
Segue, em anexo, uma possível ajuda.
Lúcio
Anexos
Domínio.png
Domínio.png (5.92 KiB) Exibido 2153 vezes
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Domínio das funções

Mensagempor kellykcl » Sex Abr 11, 2014 14:15

Lucio Carvalho escreveu:Ola kellykcl,
Segue, em anexo, uma possível ajuda.
Lúcio


Obrigada pela tentativa, mas minha dificuldade é que por serem duas inequações do 2º grau, encontramos 4 raízes ( 2 raízes de uma e duas da outra, embora com o mesmo resultado: 0 e -1) , difícil explicar onde estou errando pois estou completamente perdida neste exercício!
Você respondeu que no numerador, por ser uma raiz , a condição seria {x}^{2}+x > 0 , porém eu fiz {x}^{2}+x \geq 0 !
Se alguém pudesse me explicar passo a passo ajudaria muito!
Gostaria de saber tb se a primeira está correta! :y: :?:
"Quem ensina aprende ao ensinar e quem aprende ensina ao aprender."
(Paulo Freire)
kellykcl
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Fev 15, 2013 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia da Informação
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D