• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] - Encontrar o módulo de s.

[Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Nicolas1Lane » Dom Mar 23, 2014 00:33

A questão quer que se encontre a partir de uma relação aonde o s=u+v+w sendo que u, v e w formam dois a dois ângulos de 60º e ainda que o módulo de u é 4, o de v é 3 e finalmente w igual a 1. Determinar então o módulo do vetor s. Que deve dar raiz de 35.

O que eu tentei até agora foi usar a relação de ângulo entre 2 vetores com ângulo teta 60º para pegar o resultado já que eu já tinha alguns módulos. Mas o modo como tenho os dados me deixaram incerto de como prosseguir corretamente.

s=u+v+w pensei em substituir nesta relação os módulos, mas não encontrei sentido nesta ideia e como não tenho vetor algum fica um pouco mais complicado.
Eu já estou tentando a tarde inteira nesta questão e nada do que resolvo fecha com a que supostamente deveria.
Será que poderiam me ajudar ao menos como trabalhar esta relação com o ângulo para eu fazer o resto. Estou simplesmente perdido já que o que tentei até agora não resultou no esperado.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Russman » Dom Mar 23, 2014 18:58

Basta você lembrar que

s= \left | \overrightarrow{s} \right | = \sqrt{\overrightarrow{s} \cdot\overrightarrow{s}}

Como \overrightarrow{s} = \overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}, então

\overrightarrow{s} \cdot\overrightarrow{s} = (\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w})(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}) = \overrightarrow{u} \cdot\overrightarrow{u}+\overrightarrow{u} \cdot\overrightarrow{v}+\overrightarrow{u} \cdot\overrightarrow{w}+\overrightarrow{v} \cdot\overrightarrow{u}+\overrightarrow{v} \cdot\overrightarrow{v}+\overrightarrow{v} \cdot\overrightarrow{w}+\overrightarrow{w} \cdot\overrightarrow{u}+\overrightarrow{w} \cdot\overrightarrow{v}+\overrightarrow{w} \cdot\overrightarrow{w}

que simplifica-se-a ,dada configuração dos vetores,

s^2 = u^2+v^2+w^2 + \left 2(uv+uw+vw  \right )\cos 60^{\circ}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Nicolas1Lane » Dom Mar 23, 2014 19:13

Muito obrigado mesmo.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.