• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funções inversas

funções inversas

Mensagempor Edgard Guarido » Sex Mar 07, 2014 18:53

6-(MED. JUNDIAI) Sejam as funções f e g , de R em R, definidas por
f(x) = 2x - 1 e g(x) = kx + t. A função g será inversa de f se, e somente se,
a)k - t = 1
b)k = 2t
c) k + t = 0
d) k = t = ½

não entende por que deu a alternativa d
sendo inversa f(x) e g(x)
f(x)= 2x -1
x/2 +1/2= y

g(x) = kx + t
x/k - t/k = y


por que o resultado da alternativa d



10-(ANGLO) Seja f(x) = 3x e f -¹ a sua inversa. A raiz da equação f(x) = f -¹(x)
é :
a)0
b) 3
c) 1/3


calculando:
f -¹ = x/3
f(X) =f-¹(x) = 3x = x/3 na alternativa da letra A, não sei como desenvolver para dar 0.


quem souber por favor me ajude. E até onde eu fiz está certo?
Edgard Guarido
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 07, 2014 17:57
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando

Re: funções inversas

Mensagempor Russman » Sáb Mar 08, 2014 19:06

Na 1° é só comparar g(x) = \frac{1}{2}x + \frac{1}{2} com g(x) = kx+t. Daí, k=t = \frac{1}{2}.

Na 2° você obteve uma equação de 1° grau 3x = \frac{x}{3}. Resolvendo,

3x - \frac{x}{3} = 0 \Rightarrow \frac{9x-x}{3} = 0 \Rightarrow \frac{8x}{3} = 0 \Rightarrow x=0

(Pense: que número tem seu triplo igual a sua terça parte? Só pode ser o 0. )
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: funções inversas

Mensagempor Edgard Guarido » Qui Mar 13, 2014 15:54

muito obrigado
Edgard Guarido
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Mar 07, 2014 17:57
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}