por fff » Qua Fev 05, 2014 11:54
Bom dia, tenho dúvidas neste exercício que é para resolver com o Teorema de Bolzano:
Sejam f e g duas funções contínuas com domínio [a,b]. Sabe-se que f(a)<g(a) e f(b)>g(b). Prova, por via analítica que os gráficos de f e g se intersetam.
-

fff
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sáb Dez 21, 2013 11:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Informática
- Andamento: cursando
por e8group » Qua Fev 05, 2014 15:26
Dica :
Defina

. Mostre que

é contínua e que

e com isso conclua que existe
![c \in [a,b] c \in [a,b]](/latexrender/pictures/89a48a2849559c11ee668929aa8a973f.png)
de modo que

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por fff » Qua Fev 05, 2014 16:57
Eu fiz assim:


porque

.

porque

.
Como h é contínua (pois é a diferença de 2 funções contínuas) e

, o corolário do Teorema de Bolzano permite afirmar que :
Existe
![x\epsilon]a,b[:h(x)=0 x\epsilon]a,b[:h(x)=0](/latexrender/pictures/1512fd5253a447b726d0dfbf8a5497c6.png)
. Então o gráfico de f e g intersetam-se.
-

fff
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sáb Dez 21, 2013 11:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Informática
- Andamento: cursando
por e8group » Qui Fev 06, 2014 11:17
Está correto sua solução .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teorema de bolzano
por Fabricio dalla » Qua Mar 07, 2012 12:54
- 1 Respostas
- 1417 Exibições
- Última mensagem por MarceloFantini

Qua Mar 07, 2012 19:16
Funções
-
- Método da Bissecção Teorema de Bolzano
por romulo39 » Qua Out 12, 2011 00:05
- 1 Respostas
- 1781 Exibições
- Última mensagem por LuizAquino

Qua Out 12, 2011 09:14
Cálculo: Limites, Derivadas e Integrais
-
- Teorema de Pitágoras, exercício
por LuizCarlos » Sáb Mai 05, 2012 17:30
- 3 Respostas
- 1744 Exibições
- Última mensagem por sony01

Sáb Mai 05, 2012 21:33
Trigonometria
-
- Teorema das linhas
por valleska » Seg Mai 18, 2009 21:46
- 1 Respostas
- 3154 Exibições
- Última mensagem por Guill

Dom Jul 10, 2011 11:20
Desafios Enviados
-
- teorema de pitagoras
por stanley tiago » Sex Jan 21, 2011 15:59
- 5 Respostas
- 4464 Exibições
- Última mensagem por stanley tiago

Sáb Jan 22, 2011 15:49
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.