• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Indefinida]

[Integral Indefinida]

Mensagempor marysuniga » Qua Jan 29, 2014 14:36

Boa Tarde,

Estou tentando integrar esta função, só que não consigo passar de uma parte:
\int_{}^{}\frac{{x}^{3}dx}{\sqrt[2]{2 - {x}^{2}}}
x = \sqrt[2]{2}sent
\int_{}^{}\frac{{\left(\sqrt[]{2}sent)}^{3}}{\sqrt[]{2-{\left(\sqrt[]{2}sent \right)}^{2}}} \sqrt[]{2}cost dt
\int_{}^{}\frac{{\left(\sqrt[]{2}sent)}^{3}}{\sqrt[]{2-2{sen}^{2}t}}} \sqrt[]{2}cost dt
\int_{}^{}\frac{{\left(\sqrt[]{2}sent)}^{3}}{\sqrt[]{2-2\left (1 -{cos}^{2}t)}}} \sqrt[]{2}cost dt
\int_{}^{}\frac{{\left(\sqrt[]{2}sent)}^{3}}{\sqrt[]{2{cos}^{2}t}}} \sqrt[]{2}cost dt
\int_{}^{}\frac{{\left(\sqrt[]{2}sent)}^{3}}{\sqrt[]{2}cost}} \sqrt[]{2}cost dt
\int_{}^{} 2\sqrt[]{2}{sen}^{3}t dt
2\sqrt[]{2}\int_{}^{}{sen}^{3}t

O que eu faço com esse sen³t?
marysuniga
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Dez 19, 2013 15:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando

Re: [Integral Indefinida]

Mensagempor Man Utd » Qua Jan 29, 2014 15:39

\int \; sen^{3} t \; dt


é uma potência de seno , então faça assim:


\int \; sen^{2}t*sent \; dt


\int \; (1-cos^{2}t)*sent \; dt



use a substituição : u=cos t \; \; du=-sent \; dt.

-\int \; 1-u^2 \; du


agora é só resolver. :-D
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral Indefinida]

Mensagempor e8group » Qua Jan 29, 2014 16:46

Boa tarde p/ todos ...

Substituição simples (também) resolve o problema . Seja u = 2-x^2 Logo , x^2 = 2-u e 2x dx  = -du  \iff  xdx = - \frac{1}{2} du . Assim ,

\frac{x^3dx}{\sqrt{2-x^2}}dx = x^2 \cdot \frac{1}{\sqrt{2-x^2}} \cdot xdx . Daí ,substituindo-se x^2 , 2-x^2 exdx pelas expressões correspondentes (em termos de u) respectivamente , obteremos

\frac{x^3dx}{\sqrt{2-x^2}}dx = (2-u) \cdot \frac{1}{\sqrt{u}} \cdot \left(- \frac{1}{2} du\right)   =     \frac{1}{2} \frac{u-2}{\sqrt{u}} du = \frac{1}{2} \frac{u-2}{u^{1/2}} du =  \frac{1}{2} \frac{u}{u^{1/2}} du  - \frac{1}{u^{1/2}}du = \boxed{\frac{1}{2} u^{1/2} du - u^{-1/2} du } .

Integrando a expressão destacada e voltando para variável original terá a resposta .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Indefinida]

Mensagempor marysuniga » Sex Jan 31, 2014 14:09

Obrigada
:-D
marysuniga
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Dez 19, 2013 15:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: