por pitagoras » Sáb Dez 28, 2013 17:01
Pessoal alguém poderia me explicar porque a resposta é a b.
Considere a função
![f:[0, 5]\rightarrow R f:[0, 5]\rightarrow R](/latexrender/pictures/5b6d697b97198c3fa54ebc05dcbb2cde.png)
cujo gráfico está representado na figura a seguir:

- 1.JPG (14.07 KiB) Exibido 1116 vezes
Assinale a alternativa que melhor representa o gráfico da função da
área delimitada pelo gráfico da função f e o eixo da abscissa, no intervalo

:

- 3.JPG (9.46 KiB) Exibido 1116 vezes
-
pitagoras
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Dez 28, 2013 11:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Normal
- Andamento: cursando
por e8group » Ter Dez 31, 2013 14:31
Boa tarde . Através do gráfico fornecido , podemos obter a regra de associação da função
![f: [0,5] \mapsto \mathbb{R} f: [0,5] \mapsto \mathbb{R}](/latexrender/pictures/e8b1cb52eeb0ca24fd56ccc1a79e8f0d.png)
, a saber
![f(x) = \begin{cases} 2x ; x \in [0,1] \\ 2 ; x \in (1,2) \\ 1/2 ; x \in [2,4) \\ -2x + 10 ; x \in (4,5] \end{cases} f(x) = \begin{cases} 2x ; x \in [0,1] \\ 2 ; x \in (1,2) \\ 1/2 ; x \in [2,4) \\ -2x + 10 ; x \in (4,5] \end{cases}](/latexrender/pictures/a455e8b5b3d453c7fe9fb32267676c37.png)
.
Agora considere os quatros casos
![x \in [0,1] , x \in (1,2) , x \in [2,4) , x \in (4,5] x \in [0,1] , x \in (1,2) , x \in [2,4) , x \in (4,5]](/latexrender/pictures/278b1a153759caeaeec9821c655b2fc3.png)
.
No primeiro caso, a área da região delimitada pelo gráfico da função e o eixo x é a área do triângulo retângulo de base

e altura

; no segundo caso , terá de calcular área de um retângulo de lados

e

; no terceiro deve calcular a área de um retângulo de lados

e

; no último caso , conforme no 1° , deve computar a área de um triângulo retângulo de mesma altura do primeiro ,porém bases distintas (em geral) que és 5 - x [/tex] .
Após finalizar tudo acima ,obterá uma regra de associação de uma função ,digamos

, definida do conjunto
![[0,5] [0,5]](/latexrender/pictures/be66a98c7ffb0b7cd18378674ce90c9c.png)
ao

.
Divirta-se!
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- FUNÇÃO DA ÁREA
por GabyRitter » Sáb Jun 20, 2009 21:14
- 1 Respostas
- 1326 Exibições
- Última mensagem por Cleyson007

Ter Jun 23, 2009 09:52
Funções
-
- Função e área
por estudante_2 » Qui Dez 16, 2010 14:41
- 1 Respostas
- 2150 Exibições
- Última mensagem por 0 kelvin

Qui Dez 16, 2010 21:32
Funções
-
- calcular a área da funçao
por edilaine33 » Dom Dez 01, 2013 08:54
- 1 Respostas
- 1616 Exibições
- Última mensagem por Pessoa Estranha

Dom Dez 01, 2013 10:13
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área com função exponencial.
por Thiago 86 » Seg Set 16, 2013 12:34
- 6 Respostas
- 4415 Exibições
- Última mensagem por Thiago 86

Sex Set 20, 2013 16:57
Funções
-
- ÁREA DO TRIÂNGULO EM FUNÇÃO DOS LADOS
por Orlando Fagotti Neto » Qua Out 22, 2014 16:24
- 0 Respostas
- 1711 Exibições
- Última mensagem por Orlando Fagotti Neto

Qua Out 22, 2014 16:24
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.