por silviopuc » Dom Dez 29, 2013 00:55
Preciso de ajuda para o exercício a seguir. Não soube trabalhar com um trinômio...
A soma dos coeficientes do desenvolvimento de

é necessariamente:
a) um número maior que

b) um número entre

e

c) igual a 1
d) igual a zero
e) um número negativo.
-
silviopuc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Jan 15, 2013 12:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Dez 29, 2013 16:36
Começamos com a soma de dois números reais

.Esta soma a uma potência

se escreve como

(Teorema Binomial ) e igualdade

nos dá a soma dos coeficientes acima

. E quando temos

números reais

,o
teorema multinomial nos garanti uma forma de expandir

como se vê lá ...
Mas como o objetivo é obter a soma dos coeficientes de

na sua forma expandida . Fazendo todos

iguais a

, teremos

que és a soma requerida .
Justificativa :
Segue-se que

se escreve sob a soma das parcelas que se exprimem por

;

,esta afirmação é assegurada pelo teorema multinomial , ou então notando a fórmula de recorrência :

.Em que a notação

designa a soma dos primeiros

termos da lista

,i.e.,

.
E assim concluindo ,quando fizermos todos os

iguais

teremos a soma dos coeficientes

.
Agora tente concluir.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por silviopuc » Seg Dez 30, 2013 15:28
Santhiago eu não consegui avançar, pois eu não entendi. Porém, quero entender tudo o que você explicitou, peço que me corrija quando eu falhar e me ajude a avançar (por favor). O teorema binomial eu entendi. Sei que a soma dos coeficientes de um binômio

é dada por

(isso é bem observado no triângulo de Pascal, certo?). Mas o teorema multinomial eu não compreendi. Procurei alguma informação na internet, mas não consegui entender.
-
silviopuc
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Jan 15, 2013 12:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Seg Dez 30, 2013 18:28
Olá ,só quis deixar claro que é possível expandir

pelo teorema multinomial .Mas isto não importa ,só queremos a soma dos coeficiente de

na sua forma expandida .
Vamos supor que não conhecemos o teorema binomial e multinomial e queremos determinar a soma dos coeficientes de

e

nas suas formas expandida . Segue ,
E fazendo o mesmo processo acima sucessivas vezes esperamos que

se exprima como

com

e

números reais . Quando fizemos

teremos a soma dos coeficientes

.
silviopuc escreveu: teorema binomial eu entendi. Sei que a soma dos coeficientes de um binômio é dada por (isso é bem observado no triângulo de Pascal, certo?)
Você estar certo .
Continuando ....
E forma análoga , podemos esperar que

se escreva como

(

) e novamente se fizermos

teremos a soma dos coeficientes que és

. No se exercício tente identificar o termo geral da soma . Tente concluir .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- trinômio
por cazevedo » Seg Abr 25, 2011 22:19
- 2 Respostas
- 2084 Exibições
- Última mensagem por cazevedo

Ter Abr 26, 2011 19:25
Polinômios
-
- (CESCEM-72) Trinômio
por aline2010 » Dom Jul 25, 2010 10:57
- 2 Respostas
- 2319 Exibições
- Última mensagem por agnesrava

Seg Mai 28, 2012 13:24
Álgebra Elementar
-
- Completando o trinomio
por Carlos28 » Qui Nov 08, 2012 08:19
- 2 Respostas
- 1442 Exibições
- Última mensagem por e8group

Qui Nov 08, 2012 09:26
Equações
-
- [FATORE O TRINÔMIO]
por mirikertty » Qua Dez 19, 2012 13:14
- 2 Respostas
- 2105 Exibições
- Última mensagem por joaofonseca

Sex Dez 21, 2012 22:00
Sistemas de Equações
-
- Trinômio Quadrado Perfeito
por Balanar » Ter Ago 10, 2010 22:48
- 2 Respostas
- 4821 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 18:05
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.