• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação do segundo grau] Raiz positiva

[Equação do segundo grau] Raiz positiva

Mensagempor Gustavo Gomes » Ter Dez 10, 2013 22:15

Olá, pessoal!
Seja r a raiz positiva da equação {x}^{2}+x-1=0.
Qual é o valor de \frac{{r}^{5}}{1-r}+\frac{{2r}^{6}}{{(1-r)}^{2}}?

A resposta é 1.

Não consegui resolver... Algumas resoluções que pesquisei utilizam a igualdade: {r}^{2}=1-r. Não entendi como a raiz r satisfaz essa equação...

Aguardo. Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Equação do segundo grau] Raiz positiva

Mensagempor e8group » Qua Dez 11, 2013 17:36

Gustavo Gomes escreveu:Olá, pessoal!
Seja r a raiz positiva da equação {x}^{2}+x-1=0.
Qual é o valor de \frac{{r}^{5}}{1-r}+\frac{{2r}^{6}}{{(1-r)}^{2}}?

A resposta é 1.

Não consegui resolver... Algumas resoluções que pesquisei utilizam a igualdade: {r}^{2}=1-r. Não entendi como a raiz r satisfaz essa equação...

Aguardo. Grato.


Note que por hipótese , r^2+r-1 = 0  ,  r > 0  (*) e assim ,

r^2 = 1-r .

Em relação ao exercício , só manipular tal expressão e utilizar (*) .

\frac{{r}^{5}}{1-r}+\frac{{2r}^{6}}{{(1-r)}^{2}} =  r^5 \frac{1+r}{(1-r)^2} = r^5\frac{1+r}{r^4} = ... . Avance .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?