• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada no ponto de descontinuidade - capacitor.

Derivada no ponto de descontinuidade - capacitor.

Mensagempor Sobreira » Dom Dez 08, 2013 14:27

Amigos,

Tenho a seguinte dúvida:

Há uma afirmação que no capacitor não pode haver variação brusca de tensão em seus terminais. Lendo no livro o autor justifica que isto não é possível pois haverá a necessidade de uma corrente infinita. Mas aí que não entendi:
Pelo meu entender isto parte do problema que a derivada estará no ponto de descontinuidade da função, ou seja, indefinido e nisto a corrente terá que ir a infinito para compensar.
Mas e quando não há variação de tensão ??? Quando o gráfico v/t é uma reta?? a derivada também será 0 e portanto precisaríamos de uma corrente infinita, ou seja, para uma tensão constante a corrente no capacitor seria infinito e não zero.
i=C\frac{dv}{dt}
Anexos
capacitor.jpg
capacitor.jpg (11.5 KiB) Exibido 7322 vezes
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada no ponto de descontinuidade - capacitor.

Mensagempor young_jedi » Ter Dez 10, 2013 17:52

no primeiro caso, em que ha descontinuidade da função nos temos que a derivada tende para infinito

\frac{dv}{dt}\to \infty

no caso da reta a derivada é igual a zero portanto a corrente é igual a zero.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.