• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcular a área da funçao

calcular a área da funçao

Mensagempor edilaine33 » Dom Dez 01, 2013 08:54

calcular a área da função calculo integral.
Anexos
P29-11-13_14.35.jpg
edilaine33
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Nov 30, 2013 14:14
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em quimica
Andamento: cursando

Re: calcular a área da funçao

Mensagempor Pessoa Estranha » Dom Dez 01, 2013 10:13

Olá !

\int_{1}^{3}\frac{1}{{x}^{2}}dx

Encontrar a primitiva:

\int_{}^{}\frac{1}{{x}^{2}}dx = -{x}^{-1} + k

Fazer: primitiva avaliada de [1,3];

\int_{1}^{3}\frac{1}{{x}^{2}} = - ({3)}^{-1} - [-({1)}^{-1}] = -\frac{1}{3} + 1 = \frac{-1 + 3}{3} = \frac{2}{3}.

Certo?

Como você tentou fazer?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.