por Victor Mello » Seg Nov 11, 2013 23:13
Galera, eu estava tentando integrar
![\int\frac{dx}{\sqrt[]{4x^2-49}} \int\frac{dx}{\sqrt[]{4x^2-49}}](/latexrender/pictures/1f9875a9e61005037a2fe8488411f41c.png)
e tudo estava dando certo. Usei

e

(para servir de referência para o final da resolução). Derivei o

e substitui o dx. Aí ficou assim:
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{196sec^2\theta-49}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{196sec^2\theta-49}}](/latexrender/pictures/4f47eb7517597fb8197fb55b235ba4e7.png)
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49(4sec^2\theta-1)}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49(4sec^2\theta-1)}}](/latexrender/pictures/e11a29cae8993074cfbd2c09a5c0da1e.png)
![\int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49}*\sqrt[]{4sec^2\theta-1}} \int\frac{7sec\theta tg\theta d\theta}{\sqrt[]{49}*\sqrt[]{4sec^2\theta-1}}](/latexrender/pictures/0f0f810ba683aaf5a2369f88ba63f5c0.png)
![\int\frac{sec\theta tg\theta d\theta}{\sqrt[]{4sec^2\theta-1}} \int\frac{sec\theta tg\theta d\theta}{\sqrt[]{4sec^2\theta-1}}](/latexrender/pictures/24da9fbfa98825d2370b131d634fca1a.png)
= OBS: eu tinha cancelado o 7 como termo unitário por causa da raíz quadrada de 49
A partir daqui virou outro problema: eu preciso agora de uma outra substituição e chamei o

e derivei ela para subistituir o

e assim ficou:
![\int\frac{du}{\sqrt[]{4u^2-1}} \int\frac{du}{\sqrt[]{4u^2-1}}](/latexrender/pictures/21215219f3fede5e9e21942fa558da2d.png)
e fatorei o

![\int\frac{du}{\sqrt[]{(2u-1)(2u+1)}} \int\frac{du}{\sqrt[]{(2u-1)(2u+1)}}](/latexrender/pictures/defaf216981e526e421322de3576177e.png)
=
![\int\frac{du}{\sqrt[]{2u-1}\sqrt[]{2u+1}} \int\frac{du}{\sqrt[]{2u-1}\sqrt[]{2u+1}}](/latexrender/pictures/94dca3edf4618ea3a9b9d38a105cef4e.png)
=
![\int\frac{du}{\sqrt[]{2u-1}} *\frac{1}{\sqrt[]{2u+1}} \int\frac{du}{\sqrt[]{2u-1}} *\frac{1}{\sqrt[]{2u+1}}](/latexrender/pictures/897aac462c950b050329dd31221653ea.png)
=
E parei aqui. Não tem como mais integrar pela substituição simples e muito menos por partes por causa da raíz do denominador na integral antes de eu fazer por substituição simples. Alguém poderia sugerir qual a substituição mais adequada depois da trigonométrica? Por muito pouco eu não consegui integrar
Bom, espero que vocês tenham compreendido o meu raciocínio e se puderem me ajudar, eu agradeço
Obrigado.
-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por e8group » Ter Nov 12, 2013 20:55
Atenção com a identidade

o que implica

. Agora note

. Faça uma comparação deste resultado com a outra relação .Qual substituição deve tomar de modo escrever

como

?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Victor Mello » Ter Nov 12, 2013 22:43
Já tinha percebido isso antes de você comentar rsrsrsrsrs, sempre esqueço de um detalhe que faz toda a diferença, não sei como. Agora não posso mais esquecer.

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
por Victor Mello » Ter Nov 12, 2013 23:32
Já consegui aqui agora. Obrigado pelo detalhe.

-
Victor Mello
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Nov 03, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da computação.
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por substituição trigonométrica.
por ClaudioSP » Qui Out 08, 2009 12:25
- 1 Respostas
- 3653 Exibições
- Última mensagem por ClaudioSP

Qui Out 08, 2009 14:25
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao trigonometrica 3
por beel » Dom Nov 27, 2011 18:24
- 3 Respostas
- 2741 Exibições
- Última mensagem por LuizAquino

Seg Nov 28, 2011 16:44
Cálculo: Limites, Derivadas e Integrais
-
- integral- substituiçao trigonometrica 4
por beel » Dom Nov 27, 2011 18:29
- 1 Respostas
- 1965 Exibições
- Última mensagem por LuizAquino

Seg Nov 28, 2011 16:26
Cálculo: Limites, Derivadas e Integrais
-
- Integral por substituição trigonométrica
por Crist » Seg Nov 12, 2012 20:46
- 1 Respostas
- 1400 Exibições
- Última mensagem por e8group

Qui Nov 15, 2012 15:38
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição Trigonométrica
por klueger » Qua Mar 06, 2013 23:03
- 4 Respostas
- 3485 Exibições
- Última mensagem por Russman

Qui Mar 07, 2013 01:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.