• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida 1 / X SQRT (X^2 +1)

Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Knoner » Qui Set 26, 2013 20:15

Olá, estou em dúvida na resolução da seguinte integral: 1 / X SQRT (X^2 +1)

Obrigado !
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Man Utd » Qui Set 26, 2013 23:02

olá :)


\\\\\\ \int \frac {1}{x*\sqrt{x^{2}+1}}dx \\\\ x=tg\beta \Leftrightarrow dx=sec^{2}\beta d\beta \\\\\\ \int \frac {sec^{2}\beta }{tg\beta*\sqrt{(tg\beta)^{2}+1}}d\beta \\\\\\ \int \frac {sec^{2}\beta }{tg\beta*sec\beta}d\beta  \\\\\\ \int \frac {sec\beta }{tg\beta}d\beta \\\\\\  \int \frac{\frac{1}{cos\beta}}{\frac{sen\beta}{cos\beta}}d\beta \\\\\\ \int cossec \beta d\beta

vamos aplicar uma técnica para integrar \int cossec \beta d\beta :

\\\\\\ \int \frac{(cossec \beta)*(cotg\beta+cossec\beta)}{(cotg\beta+cossec\beta)} d\beta \\\\\\ -\int \frac{-cotg\beta*cossec\beta-cossec^{2}\beta}{(cotg\beta+cossec\beta)} \\\\\\ s=cotg\beta+cossec\beta \Leftrightarrow ds= -cotg\beta*cossec\beta-cossec^{2}\beta d\beta \\\\\\ - \int \frac{1}{s}ds \\\\ -ln|s|+C \\\\ -ln|cotg\beta+cossec\beta |+C \\\\ -ln|\frac{1}{x}+\frac{\sqrt{x^{2}+1}}{x}|+C \\\\ -ln|\frac{\sqrt{x^{2}+1}+1}{x}|+C \\\\ -(ln|\sqrt{x^{2}+1}+1|-ln|x|)+C \\\\ -ln|\sqrt{x^{2}+1}+1|+ln|x|+C \\\\ ln|\frac{x}{\sqrt{x^{2}+1}+1}|+C

edit:resposta editada
Editado pela última vez por Man Utd em Sex Set 27, 2013 01:21, em um total de 2 vezes.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Knoner » Qui Set 26, 2013 23:34

Disso eu cheguei em integral de -du/w² = 1/w porém substitui e não bateu com a resposta que é ln |x/1+sqrt(1+x²) + c
:/
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Man Utd » Sex Set 27, 2013 01:23

olá por favor reveja a mensagem,eu tinha errado (foi mal) e editei . :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida 1 / X SQRT (X^2 +1)

Mensagempor Knoner » Sex Set 27, 2013 01:30

Obrigado pela ajuda ! :D
Knoner
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Set 26, 2013 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.