• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Continuidade da função

Continuidade da função

Mensagempor Lenin » Qua Set 25, 2013 21:21

pessoal, tenho dúvida em uma questão de limites.

Para cada função f a seguir, determine D(f) e, se possível, a função g: R->R, tal que g é contínua e g(x) = f(x), para todo x pertencente D(x):

a)f(x) = \frac{{x}^{2}-9}{3-x}

eu fiz da seguinte forma: como ele fala que g(x)=f(x) eu fui usando o f(x), e acho que estou errado nessa parte. Logo eu fiz o seguinte.

\lim_{x->3}f(x)=6
porém o f(3) não está definido..quando eu faço dá uma indeterminação (não sei se para este caso tem que tirar a indeterminação) porém, sou leigo em calculo, comecei agora. Eu queria entender essa questão, desde já agradeço..preciso muito dessa questão até amanhã..se alguem puder muito me ajudar..obrigado
Lenin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 10, 2013 23:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursinho
Andamento: cursando

Re: Continuidade da função

Mensagempor Man Utd » Qua Set 25, 2013 21:35

Lenin escreveu:pessoal, tenho dúvida em uma questão de limites.

Para cada função f a seguir, determine D(f) e, se possível, a função g: R->R, tal que g é contínua e g(x) = f(x), para todo x pertencente D(x):

a)f(x) = \frac{{x}^{2}-9}{3-x}

eu fiz da seguinte forma: como ele fala que g(x)=f(x) eu fui usando o f(x), e acho que estou errado nessa parte. Logo eu fiz o seguinte.

\lim_{x->3}f(x)=6
porém o f(3) não está definido..quando eu faço dá uma indeterminação (não sei se para este caso tem que tirar a indeterminação) porém, sou leigo em calculo, comecei agora. Eu queria entender essa questão, desde já agradeço..preciso muito dessa questão até amanhã..se alguem puder muito me ajudar..obrigado


olá :)

não tenho muita certeza,mas vamos lá :-D :

o dominio de f será \\\\ D(f)=\Re-(3) que é o conjunto dos números reais exceto 3 que zeraria o denominador,já para obter uma função g(x) contínua e g(x) = f(x), para todo x pertencente ao dominio de f(x) :

vamos fatorar para tirar a indeterminação:

\\\\ \frac{{x}^{2}-9}{3-x} \\\\  \frac{(x-3)*(x+3)}{(3-x)} \\\\  -\frac{(x-3)*(x+3)}{(x-3)} =-x-3

que para todo x pertecente ao dominio de f,a função possui a msm imagem e é continua.

espero que seja isso.

att mais :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)