• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Aritmética] Equação Exponencial.

[Aritmética] Equação Exponencial.

Mensagempor Pessoa Estranha » Seg Ago 26, 2013 18:16

Olá Pessoal, gostaria que me ajudassem com este exercício: {4}^{x}+{6}^{x}=2.{9}^{x}.

Tentei o seguinte:

{(2.2)}^{x}+{(2.3)}^{x}=2.{(3.3)}^{x}\rightarrow {2}^{2x}+{2}^{x}.{3}^{x}=2.{(3)}^{2x}

{2}^{x}.({2}^{x + {3}^{x}})=2.{(3)}^{2x}.

Contudo, não consigo chegar à um resultado.

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Aritmética] Equação Exponencial.

Mensagempor Russman » Seg Ago 26, 2013 18:43

Eu sugiro que você aplique o logaritmo para transforma a equação.

4^x + 6^x = 2.9^x \Rightarrow x \ln(4) + x \ln(6) = \ln(2) + x \ln(9)

Disso,

x( 2 \ln(2) + \ln(2) + \ln(3) - 2\ln(3)) = \ln(2)
x (3 \ln(2) - \ln(3)) = \ln(2)
x = \frac{\ln(2)}{3 \ln(2) - \ln(3)}

A base do logaritmo é livre.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Aritmética] Equação Exponencial.

Mensagempor Luis Gustavo » Seg Ago 26, 2013 19:04

Russman escreveu:Eu sugiro que você aplique o logaritmo para transforma a equação.

4^x + 6^x = 2.9^x \Rightarrow x \ln(4) + x \ln(6) = \ln(2) + x \ln(9)

Disso,

x( 2 \ln(2) + \ln(2) + \ln(3) - 2\ln(3)) = \ln(2)
x (3 \ln(2) - \ln(3)) = \ln(2)
x = \frac{\ln(2)}{3 \ln(2) - \ln(3)}

A base do logaritmo é livre.

Mas existe uma maneira muito mais simples, Russman.

4^x+6^x=2\cdot9^x
(2^2)^x+(2\cdot3)^x=2\cdot(3^2)^x
2^{2x}+2^x\cdot3^x=2\cdot3^{2x}

Dividimos toda a equação por 3^{2x}, obtendo:

\dfrac{2^{2x}}{3^{2x}}+\dfrac{2^x\cdot3^x}{3^{2x}}=\dfrac{2\cdot3^{2x}}{3^{2x}}

\left(\dfrac{2}{3}\right)^{2x}+\left(\dfrac{2}{3}\right)^x=2

Fazendo \left(\dfrac{2}{3}\right)^x=y, vem:

y^2+y=2
y^2+y-2=0
y=1\text{ ou }y=-2

A segunda solução não convém. Da primeira, vem que:

\left(\dfrac{2}{3}\right)^x=1

\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^0\Rightarrow x=0

Resolvido (:
Luis Gustavo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Mai 06, 2013 15:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Aritmética] Equação Exponencial.

Mensagempor Russman » Seg Ago 26, 2013 19:20

Eu cometi um erro de atenção. O logaritmo da soma não é a soma dos logaritmos! Por isso a minha solução não admite x=0.

O tratamento correto seria usando números complexos. Mas, de fato, x=0 é a única solução inteira da equação.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Aritmética] Equação Exponencial.

Mensagempor Pessoa Estranha » Seg Ago 26, 2013 21:57

Obrigada! Na verdade é bastante simples :oops: .... Valeu!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?