• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações Diferenciais

Equações Diferenciais

Mensagempor FernandaOliveira » Dom Ago 25, 2013 20:52

Questão 3: Considere um circuito elétrico modelado pela equação diferencial R dQ/dt + 1Q/C = E(t)
que contem um capacitor com capacitância de C Farads (F); um resistor
com uma resistência de R ohms (\Omega ); com carga Q medida em coulombs; voltagem E(t)
medida em volts e o tempo t medido em segundos.
Supondo que , R=2\Omega, C=0,01 F, Q(0)=0 e E(t)=10sen (60t), calcule a carga e a corrente i
no instante t. (observação a corrente i é dada por i = dQ/dt ).


Me ajudem por favor é urgente preciso enviar a prova até dia 27/08 terça feira.
FernandaOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Ago 25, 2013 20:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equações Diferenciais

Mensagempor young_jedi » Seg Ago 26, 2013 16:22

a equação é

R\frac{dQ}{dt}+\frac{Q}{C}=10.sen(60.t)

\frac{dQ}{dt}+\frac{Q}{RC}=\frac{10}{R}.sen(60.t)

resolvendo pelo método do fator integrante temos

\int \frac{1}{RC}dt=\frac{t}{RC}

o fator integrante vai ser

e^{\frac{t}{RC}}

a equação diferencial fica

Q.e^{\frac{t}{RC}}=\int e^{\frac{t}{RC}}.\frac{10}{R}sen(60t)dt

fazendo

u=e^{\frac{t}{RC}}

du=\frac{1}{RC}.e^{\frac{t}{RC}}.dt

dv=\frac{10}{R}.sen(60t)dt

v=\int \frac{10}{R}.sen(60t)dt

v= -\frac{10}{60.R}.cos(60t)

\int e^{\frac{t}{RC}}.\frac{10}{R}sen(60t)dt=e^{\frac{t}{RC}}.\left(-\frac{10}{60.R}.cos(60t)\right)-\int -\frac{10}{60.R}.cos(60t).\frac{1}{RC}.e^{\frac{t}{RC}}.dt

\int e^{\frac{t}{RC}}.\frac{10}{R}sen(60t)dt=-e^{\frac{t}{RC}}.\frac{10}{60.R}.cos(60t)+\int\frac{10}{60.R}.cos(60t).\frac{1}{RC}.e^{\frac{t}{RC}}.dt

fazendo por partes novamente

u=e^{\frac{t}{RC}}

du=\frac{1}{RC}.e^{\frac{t}{RC}}.dt

dv=\frac{10}{60.C.R^2}.cos(60t)dt

v=\int \frac{10}{60.C.R^2}.cos(60t)dt

v= \frac{10}{60^2.C.R^2}.sen(60t)

\int e^{\frac{t}{RC}}.\frac{10}{R}sen(60t)dt=-e^{\frac{t}{RC}}.\frac{10}{60.R}.cos(60t)+e^{\frac{t}{RC}}.\frac{10}{60^2.C.R^2}.sen(60t)-\int\frac{10}{60^2.C.R^2}.sen(60t)\frac{1}{RC}.e^{\frac{t}{RC}}.dt

\left(1+\frac{1}{R^2.C^2.60^2}\right)\int e^{\frac{t}{RC}}.\frac{10}{R}sen(60t)dt=-e^{\frac{t}{RC}}.\frac{10}{60.R}.cos(60t)+e^{\frac{t}{RC}}.\frac{10}{60^2.C.R^2}.sen(60t)

\int e^{\frac{t}{RC}}.\frac{10}{R}sen(60t)dt=\left(\frac{(RC.60)^2}{1+(RC.60)^2}\right)\left(-e^{\frac{t}{RC}}.\frac{10}{60.R}.cos(60t)+e^{\frac{t}{RC}}.\frac{10}{60^2.C.R^2}.sen(60t)\right)+C

Q.e^{\frac{t}{RC}}=\left(\frac{(RC.60)^2}{1+(RC.60)^2}\right)\left(-e^{\frac{t}{RC}}.\frac{10}{60.R}.cos(60t)+e^{\frac{t}{RC}}.\frac{10}{60^2.C.R^2}.sen(60t)\right)+C

Q=\left(\frac{(RC.60)^2}{1+(RC.60)^2}\right)\left(-\frac{10}{60.R}.cos(60t)+\frac{10}{60^2.C.R^2}.sen(60t)\right)+C.e^{-\frac{t}{RC}}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: