• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Imprópria - Convergência/Divergência]

[Integral Imprópria - Convergência/Divergência]

Mensagempor raimundoocjr » Sáb Ago 03, 2013 17:21

Imagem
raimundoocjr
 

Re: [Integral Imprópria - Convergência/Divergência]

Mensagempor e8group » Sáb Ago 03, 2013 20:39

Na minha opinião está incorreto a primitiva postada . O correto é :

\frac{ln|2t-5|}{2} + c .

Quando p\to -\infty  , |2p-5|\to+\infty , logo ln|2p-5|/2  \to+\infty . Por outro lado , quando
t=0 ,  ln|2t-5|/2  = ln5/2 .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Imprópria - Convergência/Divergência]

Mensagempor raimundoocjr » Sáb Ago 03, 2013 22:02

A ideia foi a seguinte:
\int_{}^{}\frac{1}{2t-5}=\frac{1}{2}[ln(2t-5)]+constante
\int_{p}^{0}\frac{1}{2t-5}=[\frac{1}{2}(ln(2t-5))]_{p}^{0}
\int_{a}^{b}\frac{1}{2t-5}=[\frac{1}{2}(ln(2t-5))]_{a}^{b}

Vou fazer um exemplo simples abaixo:
Resolver \int_{2}^{\infty}\frac{1}{x^2}dx.
\int_{2}^{\infty}\frac{1}{x^2}dx=\lim_{n\rightarrow\infty}\int_{2}^{n}\frac{1}{x^2}dx=\lim_{n\rightarrow\infty}[-\frac{1}{x}]_{2}^{n}=\lim_{n\rightarrow\infty}-\frac{1}{n}+\lim_{n\rightarrow\infty}\frac{1}{2}
Limite de uma constante é a própria constante:
Resposta: \frac{1}{2}, convergente.

O raciocínio foi assim:
\frac{}{}\int_{-\infty}^{0}\frac{1}{2t-5}dt=\lim_{p\rightarrow-\infty}\int_{p}^{0}\frac{1}{2t-5}dt=\lim_{p\rightarrow-\infty}[\frac{1}{2}(ln(2t-5))]_{p}^{0}

"Continuando absurdamente":
\lim_{p\rightarrow-\infty}[\frac{1}{2}(ln(2t-5))]_{p}^{0}=\lim_{p\rightarrow-\infty}\frac{1}{2}(ln(2\bullet0-5))-\lim_{p\rightarrow-\infty}\frac{1}{2}(ln(2\bullet p-5))
raimundoocjr
 

Re: [Integral Imprópria - Convergência/Divergência]

Mensagempor e8group » Dom Ago 04, 2013 00:09

Na minha opinião da forma que você primitivou não é possível o estudo do comportamento do mesmo lá em -\infty da mesma forma que tal primitiva aplicada em t = 0 (pois ,quando t = 0 ;2t -5 = -5 < 0) , uma vez que o conjunto domínio da função logarítmica é (0,+\infty) .Agora ,sendo :

\int \frac{1}{2t-5} dt = \frac{ln|2t-5|}{2} + c . Temos que :

\lim_{p\to -\infty} (\frac{ln|2\cdot 0-5|}{2} + c - \frac{ln|2p-5|}{2} - c )  = ln5/2 -  \lim_{p\to -\infty} \frac{ln|2p-5|}{2} ...

Consegue terminar agora .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral Imprópria - Convergência/Divergência]

Mensagempor raimundoocjr » Dom Ago 04, 2013 12:03

Valeu. Ficou mais claro agora.
raimundoocjr
 

Re: [Integral Imprópria - Convergência/Divergência]

Mensagempor e8group » Dom Ago 04, 2013 12:26

Veja que interessante :

D_t ln|t| = 1/t  , \forall t \in \mathbb{R}\setminus\{0\} .De fato se poremos |t| = max\{t,-t\} e definimos t\in \mathbb{R}\setminus\{0\}\overset{g}{\longmapsto} g(t) = max\{t,-t\} \in \mathbb{R} , temos que pela regra da cadeia :


D_t ln|t| = (ln|t|)' = (ln(g(t)))' = ln'(g(t)) \cdot g'(t) = \frac{g'(t)}{g(t)} . Ora se t > 0 segue-se que max\{t,-t\} = t e portanto g'(t) = 1 . Assim para t > 0 obtemos :

D_t ln|t| =  1/x . Por outro lado para t < 0 ,


max\{t,-t\} = -t logo g'(t) = - 1 e portanto D_t ln|t| = (-1)/(-t) = 1/t .

Tente não esquecer do módulo ,eu mesmo já cometi este erro muitas vezes.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?