• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral indefinida] qual o processo de resolução a usar

[integral indefinida] qual o processo de resolução a usar

Mensagempor armando » Seg Jul 29, 2013 23:53

Boa noite a todos.

Considerem a seguinte integral:

\int \sqrt{1-e^x}\,\,dx

Qual o processo de resolução a usar ? Por partes ? Por substituição ... ?

Grato pela atenção.
armando
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Russman » Ter Jul 30, 2013 00:30

Substituição!

Faça e^x = u e depois v = \sqrt{1-u} que eu acho que funciona.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor MateusL » Ter Jul 30, 2013 02:47

Faça u=\sqrt{1-e^x}\implies e^x=1-u^2.

Teremos:

\dfrac{du}{dx}=\dfrac{d\sqrt{1-e^x}}{dx}=-\dfrac{e^x}{2\sqrt{1-e^x}}\implies dx=-\dfrac{2\sqrt{1-e^x}}{e^x}\cdot du

Assim:

\int \sqrt{1-e^x}\cdot dx=-\int \sqrt{1-e^x}\cdot \dfrac{2\sqrt{1-e^x}}{e^x}\cdot du=2\int \dfrac{-u^2}{1-u^2}\cdot du

\int \sqrt{1-e^x}\cdot dx=2\int \dfrac{1-u^2-1}{1-u^2}\cdot du=2\int \left(1-\dfrac{1}{1-u^2}\right)\cdot du

\int \sqrt{1-e^x}\cdot dx=2\int du-\int \dfrac{1}{1-u^2}\cdot du=2u+C-\int \dfrac{1}{1-u^2}\cdot du

Só não consegui encontrar uma maneira de resolver \int\dfrac{1}{1-u^2}\cdot du (sem ser utilizando o WolframAlpha).

Abraço
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Russman » Ter Jul 30, 2013 03:13

Basta tomar

\frac{1}{1-u^2} = \frac{1}{(1-u)(1+u)} = \frac{A}{1-u} + \frac{B}{1+u}

onde

A(1+u) + B(1-u) = 1.

Logo, A +B  =1 e A - B = 0 de modo que A = B = \frac{1}{2} e, portanto,

\int \frac{du}{1-u^2} = \int \frac{1}{2} \frac{du}{1+u}+\int  \frac{1}{2} \frac{du}{1-u} = \frac{1}{2} \ln (1+u)- \frac{1}{2} \ln(1-u)+c
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Man Utd » Ter Jul 30, 2013 11:26

também poderia resolver de imediato assim:
\int \frac{1}{1-x^{2}}dx=arc tgh x +C
Editado pela última vez por Man Utd em Ter Jul 30, 2013 19:29, em um total de 1 vez.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Man Utd » Ter Jul 30, 2013 15:31

:)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Russman » Ter Jul 30, 2013 17:24

De imediato? Haha
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Man Utd » Ter Jul 30, 2013 19:31

é mais ligeiro que fazer por frações parciais né?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Russman » Ter Jul 30, 2013 19:38

Mas como voce demonstra o resultado se não por fraçoes parciais? A diferença daqueles logaritmos é, por definição, o arco tangente hiperbólico.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Man Utd » Ter Jul 30, 2013 19:58

eu não posso demosntrar assim?
pela definição da derivada função inversa:
f(x)=tgh x---------f¹(x)=arc tgh x
\\\\ \frac{d(arc tgx)}{dx}=\frac{1}{sech^{2}(arc tghx)} \\\\ \frac{d(arc tgx)}{dx}=\frac{1}{1-tgh^{2}(arctgx)} \\\\ \frac{d(arc tgx)}{dx}=\frac{1}{1-x^{2}}

tem certeza que você ñ acha mais prático?
único ponto negativo que eu vejo é a memorização,mas a dedução é extremamente fácil. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Russman » Ter Jul 30, 2013 20:06

Eu ainda acho mais simples usando as exponenciais. Mas tudo bem, diversos caminhos levam à Roma.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [integral indefinida] qual o processo de resolução a usa

Mensagempor Man Utd » Ter Jul 30, 2013 20:09

:) :) :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59