• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites]Envolvendo Logaritmos.

[Limites]Envolvendo Logaritmos.

Mensagempor Pessoa Estranha » Ter Jul 23, 2013 12:54

Olá.... Por favor, me ajudem a calcular estes limites. Eles envolvem logaritmos na base e. Tentei resolvê-los, mas no primeiro, a minha resposta deu zero; no segundo, deu indeterminação; e no terceiro, não consegui chegar a uma resposta.
Obrigada.

d) \lim_{x\rightarrow+\infty}{ln(\frac{x}{x+1})}

e) \lim_{x\rightarrow+\infty}{[ln(2x+1)-ln(x+3)]}

g) \lim_{x\rightarrow+\infty}{{[[x.ln(2)]-ln({3}^{x}+1)]}}
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Limites]Envolvendo Logaritmos.

Mensagempor young_jedi » Ter Jul 23, 2013 19:58

o primeiro realmente da 0

o terceiro podemos fazer o seguinte

\lim_{x\to\infty}xln2-ln(3^x+1)=\lim_{x\to\infty}ln(2^x)-ln(3^x+1)

=\lim_{x\to\infty}ln\frac{(2^x)}{(3^x+1)}

=\lim_{x\to\infty}ln\frac{1}{\left(\frac{3}{2}\right)^x+\frac{1}{2^x}}

=\lim_{x\to\infty}ln1-ln\left(\left(\frac{3}{2}\right)^x+\frac{1}{2^x}}\right)=-\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limites]Envolvendo Logaritmos.

Mensagempor MateusL » Ter Jul 23, 2013 22:19

No segundo acho que dá para fazer assim:

\lim_{x\to +\infty}[\ln(2x+1)-\ln(x+3)]=\lim_{x\to +\infty}\ln\left(\dfrac{2x+1}{x+3}\right)

=\ln\left(\lim_{x\to +\infty}\dfrac{2x+1}{x+3}\right)=\ln\left(\lim_{x\to +\infty}\dfrac{\frac{2x+1}{x}}{\frac{x+3}{x}}\right)=\ln\left(\lim_{x\to +\infty}\dfrac{2+\frac{1}{x}}{1+\frac{3}{x}}\right)

=\ln(2)

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites]Envolvendo Logaritmos.

Mensagempor Pessoa Estranha » Qua Jul 24, 2013 11:17

Ótimas as respostas! Valeu!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.