por fabriel » Dom Jun 23, 2013 01:32
E ai pessoal, estou na duvida nesse exercicio... Vejam:
Se w=f(x,y), em que

e

, mostre que,

Resolvendo.... Sei que..

e

E quando vou somar a expressão

vai zera:
Onde eu errei nos calculos?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por young_jedi » Dom Jun 23, 2013 11:54
Na verdade você tem que

calculando a derivada segunda teremos que

para teta é a mesma coisa, comente se tiver duvidas
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por fabriel » Dom Jun 23, 2013 13:50
hummm obrigado aiestou começando a compreender essa passagem.
Mas a minha duvida é em relação a essa expressão por exemplo:

Como ficaria essa expressão?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
-

fabriel
- Usuário Parceiro

-
- Mensagens: 88
- Registrado em: Ter Mai 22, 2012 16:04
- Localização: Chapadão do Sul-MS
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por young_jedi » Seg Jun 24, 2013 18:52
como não sabemos qual é a relação de w com x e y, não tem como calcular essa parcela
mais repare que esta parcela aparece duas vezes na expressão, o esperado é que ao substituir os valores das demais derivadas parciais e fazendo a soma com a derivada parcial com relação a teta você consiga cancelar essas duas parcela.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- FUNÇÃO DE DUAS VARIÁVEIS; DERIVADAS
por anselmojr97 » Seg Nov 09, 2015 02:14
- 4 Respostas
- 3762 Exibições
- Última mensagem por anselmojr97

Ter Nov 10, 2015 00:02
Cálculo: Limites, Derivadas e Integrais
-
- Problema com duas variáveis
por helen_chaves » Qua Jun 03, 2009 12:00
- 3 Respostas
- 4124 Exibições
- Última mensagem por Cleyson007

Sex Jun 05, 2009 12:51
Funções
-
- Limite de duas variaveis
por Tixa11 » Seg Abr 01, 2013 13:13
- 1 Respostas
- 2198 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 11:09
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Duas variaveis
por fabriel » Sáb Jun 15, 2013 16:48
- 2 Respostas
- 2491 Exibições
- Última mensagem por temujin

Sáb Jun 15, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- Função de duas variáveis
por lilianers » Qua Ago 21, 2013 19:37
- 1 Respostas
- 2364 Exibições
- Última mensagem por Renato_RJ

Qui Ago 22, 2013 12:46
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.