• Anúncio Global
    Respostas
    Exibições
    Última mensagem

FUNÇÕES

FUNÇÕES

Mensagempor Direito » Sáb Jun 01, 2013 18:49

Direito
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Mar 13, 2013 00:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: FUNÇÕES

Mensagempor e8group » Dom Jun 02, 2013 15:07

Com a relação que você postou , podemos determinar f(x) e f(x^{-1}) da seguinte forma .

Suponha \gamma \neq 0 ,então :


\begin{cases}  2f(\gamma) - f(\gamma^{-1}) = \gamma^2 \\  2f(\gamma^{-1}) - f(\gamma) = \gamma^{-2} \end{cases} (Atenção ! (\gamma^{-1})^{-1} =\gamma ) .

Multiplicando a 2ª equação por 2 e somando na primeira eq. obtemos ,

2f(\gamma) - f(\gamma^{-1}) + 2[2f(\gamma^{-1}) - f(\gamma)] = \gamma^{2} + 2\gamma^{-2} \implies 3 f(\gamma^{-1}) =  \gamma^{2} + 2\gamma^{-2}  \implies   \boxed{f(\gamma^{-1}) = \frac{\gamma^{2} + 2\gamma^{-2} }{3}} .

Substituindo-se f(\gamma^{-1}) na primeira ou segunda equação você encontra f(\gamma) . Depois basta fazer \gamma = 2 ou \gamma = 2^{-1} = 1/2 .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: FUNÇÕES

Mensagempor e8group » Dom Jun 02, 2013 15:41

Ou melhor , multiplique a primeira equação por 2 e soma a segunda obtendo então :

f(\gamma) = \frac{\gamma^{-2} +2 \gamma^2}{3} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.