• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potências

Potências

Mensagempor Jhennyfer » Qui Mai 16, 2013 11:31

a resposta no meu gabarito é -2 e eu só consigo chegar em 0
(MACK) O valor da expressão \left[\left(\frac{-1}{2}\right)^4 + \left(\frac{-1}{2} \right)^3\right]. \left[\left(\frac{-1}{2} \right)^4 - 2^-^5 \right]^-^1

Ps. não consegui deixar o 1 elevado com o sinal... mas ali no final é ^-1.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potências

Mensagempor Victor Gabriel » Qui Mai 16, 2013 12:29

olha ai a resolução da questão:

\left(\frac{1}{{2}^{4}}+\frac{(-1)}{{2}^{3}} \right).\left(\frac{1}{{2}^{4}}-\frac{1}{{2}^{5}} \right)^{-1}=

=\left(\frac{1}{16}-\frac{1}{8} \right).\left(\frac{1}{24}-\frac{1}{32} \right)^{-1}=\left(\frac{1-2}{16} \right).\left(\frac{2-1}{32} \right)^{-1}=-\frac{1}{16}.\left( \frac{1}{32}\right)^{-1}=-\frac{1}{16}.32=-2
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: Potências

Mensagempor Jhennyfer » Qui Mai 16, 2013 12:38

opa, 2^4 é 16.
no mais tudo ok, obrigado me ajudou mto.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potências

Mensagempor Victor Gabriel » Qui Mai 16, 2013 13:12

é verdade jhrnnyfer, mim atrapalhei, no lugar de 24 é 16 pois, {2}^{4}=2.2.2.2=16.

Valeu!
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)