• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor amandatenorio » Dom Abr 28, 2013 18:03

Alguém pode me ajudar nessa questão? Não estou conseguindo. =/

Imagem
amandatenorio
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 28, 2013 17:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Limite

Mensagempor young_jedi » Seg Abr 29, 2013 13:04

primeiro vamos multiplicar e dividir por \sqrt{x(x+a)}+x

\lim_{x\to\infty}\sqrt{x(x+a)}-x.\frac{\sqrt{x(x+a)}+x}{\sqrt{x(x+a)}+x}

\lim_{x\to\infty}\frac{x(x+a)-x^2}{\sqrt{x(x+a)}+x}

\lim_{x\to\infty}\frac{x^2+ax-x^2}{\sqrt{x(x+a)}+x}

\lim_{x\to\infty}\frac{ax}{\sqrt{x(x+a)}+x}

agora colocando x em evidencia para fora da raiz embaixo temos

\lim_{x\to\infty}\frac{ax}{x(\sqrt{1+\frac{a}{x}}+1)}

\lim_{x\to\infty}\frac{a}{(\sqrt{1+\frac{a}{x}}+1)}

quando x tende para infinito o termo a/x tende para zero então

\lim_{x\to\infty}\frac{a}{(\sqrt{1+\frac{a}{x}}+1)}=\frac{a}{\sqrt1+1}=\frac{a}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Limite

Mensagempor Man Utd » Seg Abr 29, 2013 20:20

young_jedi escreveu:agora colocando x em evidencia para fora da raiz embaixo temos
\lim_{x\to\infty}\frac{a}{(\sqrt{1+\frac{a}{x}}+1)}


não ficaria assim?
\\\\\\ \lim_{x\rightarrow -\infty}\frac{ax}{\sqrt{x^{2}+ax+x}} \\\\\\ \lim_{x\rightarrow -\infty}\frac{ax}{\sqrt{x^{2}(1+\frac{a}{x}+\frac{1}{x})}} \\\\\\ \lim_{x\rightarrow -\infty}\frac{ax}{\sqrt x^{2}.\sqrt{(1+\frac{a}{x}+\frac{1}{x})}} \\\\\\ \lim_{x\rightarrow -\infty}\frac {ax}{x.(\sqrt{1+\frac{a}{x}+\frac{1}{x}})}=a
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Limite

Mensagempor young_jedi » Seg Abr 29, 2013 20:33

então o x esta fora da raiz

\sqrt{x(x+a)}+x=\sqrt{x^2+ax}+x

=\sqrt{x^2(1+\frac{a}{x})}+x

=\sqrt x^2\sqrt{1+\frac{a}{x}}+x

=x\sqrt{1+\frac{a}{x}}+x

=x(\sqrt{1+\frac{a}{x}}+1)

então no limite ficaria

\lim_{x\to\infty}\frac{ax}{x(\sqrt{1+\frac{a}{x}}+1)}

\lim_{x\to\infty}\frac{a}{(\sqrt{1+\frac{a}{x}}+1)}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Limite

Mensagempor Man Utd » Ter Abr 30, 2013 10:04

é msm eu tinha cometido um erro,muito obrigado pela ajuda. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59