• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão do ITA

Questão do ITA

Mensagempor sergioh » Dom Abr 28, 2013 22:55

Se S é a área total de um cilindro reto de altura h, e se m é a razão direta entre a área lateral e a soma das áreas das bases, então o valor de h é dado por:

a) h = m.\sqrt\frac{S}{2\pi(m+1)} (Resposta)

b) h = m.\sqrt\frac{S}{4\pi(m+2)}

c) h = m.\sqrt\frac{S}{2\pi(m+2)}

d) h = m.\sqrt\frac{S}{4\pi(m+1)}
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão do ITA

Mensagempor e8group » Seg Abr 29, 2013 12:32

O que vc tentou ?


A área da base A_b corresponde a área da circunferência de raio r > 0 e a área lateral A_l do cilindro equivale a área do retângulo de base 2\pi r e altura h .Com estas informações ,obtemos

i) A_b = \pi r^2  \\ 

ii) A_l = 2\pi r \cdot h  \\ 

iii) S = 2A_b + A_l =   2\pi r^2  + 2\pi rh .

No item iii) ,dividindo-se ambos membros por 2A_b = 2\pi r^2 ,segue

r\frac{S}{2\pi r^2} -r  = h .

Substiuindo-se h no item ii) ,

A_l = 2\pi r^2 \cdot \left( -1+\frac{S}{2\pi r^2} \right) \iff

m = -1+\frac{S}{2\pi r^2}   \iff   2\pi r^2[m + 1] = S  \iff  r  = \sqrt{\frac{S}{2\pi(m+1)}}

Lembrando que r\frac{S}{2\pi r^2} -r   =  r\left(\frac{S}{2\pi r^2} - 1 \right ) = h

Segue o resultado do gabarito ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão do ITA

Mensagempor sergioh » Seg Mai 06, 2013 22:03

Meu amigo... não consegui acompanhar seu raciocínio...estudei-o detalhadamente mas tem algo que não se encaixa...poderia fazê-lo passo a passo (prum leigo como eu)
sergioh
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Abr 01, 2013 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão do ITA

Mensagempor e8group » Seg Mai 06, 2013 22:13

Qual parte exatamente você não compreendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: