• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida Geometria

Duvida Geometria

Mensagempor Lana » Qua Abr 24, 2013 20:28

(CEFET-MG)Segundo Semestre Graduação 2012
A figura abaixo representa o triângulo ABC e o paralelogramo AMOR
de áreas, respectivamente S1 e S2,
Imagem
Gabarito:S2=\frac{4}{9}S1
Obrigado!
Lana
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Abr 24, 2013 19:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Compução
Andamento: cursando

Re: Duvida Geometria

Mensagempor DanielFerreira » Qui Abr 25, 2013 18:57

Lana,
boa tarde!

triang.png
triang.png (15.93 KiB) Exibido 3462 vezes


Tentei representar a altura do \Delta CRO por h'

A altura do \Delta ABC por H. Portanto, a altura do paralelogramo é dada por (H - h').

Como \overline{RO} // \overline{AB}, temos:

\\ \frac{\overline{CR}}{\overline{CA}} = \frac{h'}{H} \\\\\\ \frac{x}{3x} = \frac{h'}{H} \Leftrightarrow \frac{1}{3} = \frac{h'}{H} \\\\ \boxed{H = 3h'}


Enfim, encontremos as áreas:

- S_1:

\\ S_1 = \frac{b \times h}{2} \\\\\\ S_1 = \frac{3z \times H}{2} \\\\\\ z \times H = \frac{2 \cdot S_1}{3} \\\\\\ z \times 3h' = \frac{2 \cdot S_1}{3} \\\\\\ \boxed{z \times h' = \frac{2 \cdot S_1}{9}}


- S_2:

\\ S_2 = b \times h \\\\ S_2 = z \times \left ( H - h' \right )  \\\\ S_2 = z \times 2h' \\\\ \boxed{z \times h' = \frac{S_2}{2}}


Igualando-as...

\\ \frac{2 \cdot S_1}{9} = \frac{S_2}{2} \\\\ 9 \cdot S_2 = 4 \cdot S_1 \\\\ \boxed{\boxed{\boxed{S_2 = \frac{4 \cdot S_1}{9}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Duvida Geometria

Mensagempor Lana » Qui Abr 25, 2013 20:43

Muito obrigado amigo.
Eu tinha me esquecido que as relações de semelhança de em triangulo retângulo também se aplicavam para alturas.
Lana
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Abr 24, 2013 19:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Compução
Andamento: cursando

Re: Duvida Geometria

Mensagempor DanielFerreira » Sex Abr 26, 2013 20:18

Ok!

Até a próxima!!

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59