• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DERIVADA] FORMA PARAMÉTRICA

[DERIVADA] FORMA PARAMÉTRICA

Mensagempor fabriel » Qui Abr 25, 2013 17:43

E ai Pessoal blz?
Então estou em duvida nesse exercicio.
-- Calcular a derivada y'=\frac{dy}{dx} da seguinte função definida na forma paramétrica. Para quais valores de t, y' está definida?
Essa é a função dada na forma paramétrica:
x=cos (2t)
y=sen(2t)
e isso para t\in\left[0,\frac{\pi}{2} \right]

Calculei a derivada e deu:
\frac{dy}{dx}=\frac{\frac{d(sen(2t))}{dt}}{\frac{d(cos(2t))}{dt}}=\frac{2cos2t}{-2sen2t}=-\frac{cos2t}{sen2t}=-cotg 2t

A minha duvida é nessa questão, como é que vou colocar \frac{dy}{dx} em função de x?

e mesmo se eu conseguir colocar, para quais valores de t, y' está definida, sendo que coloquei \frac{dy}{dx} em função de x?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [DERIVADA] FORMA PARAMÉTRICA

Mensagempor e8group » Qui Abr 25, 2013 21:24

Pensei de outra forma :

Pela regra da cadeia ,temos :

\frac{dy}{dx} = \frac{dsin(2t)}{dx} = \frac{dsin(2t)}{d(2t)} \cdot \frac{d(2t)}{dx} = 2 cos(2t) \cdot \frac{dt}{dx} = 2x \cdot \frac{dt}{dx} .

Mas , \frac{d cos(2t)}{dx} = \frac{d(cos(2t)}{d(2t)}\cdot \frac{d(2t)}{dx} = -2sin(2t) \cdot \frac{dt}{dx}=  -2y \cdot \frac{dt}{dx} =   \frac{dx}{dx} = 1 .

Para y\neq 0 podemos isolar D_x t ,

\frac{dt}{dx} = \frac{-1}{2y} .

Daí ,


\frac{dy}{dx}  =  -\frac{x}{y} (Que é o que vc achou).

Mas pela identidade trigonométrica ,temos sin^2(2t) = 1 -cos^2(2t) = 1 -x^2 .E como ,

y = sin(2t) > 0  \forall t \in (0,\pi/2) ,

resulta

y = sin(2t) = \sqrt{1-x^2} .


Assim ,

\frac{dy}{dx}  =  -\frac{x}{\sqrt{1-x^2}} , x\in (0,1) .

Se não errei algum cálculo acredito que seja isto .

Obs.: Da forma que vc fez está certo também ,só há um problema no intervalo [0,\pi/2] há dois valores que cot(2t) não está definido .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [DERIVADA] FORMA PARAMÉTRICA

Mensagempor fabriel » Sex Abr 26, 2013 02:36

Entendo, obrigado!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}