• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ajuda!

ajuda!

Mensagempor Jhennyfer » Qui Abr 25, 2013 14:40

Não entendi o exercício...
Dertermine os valores reais de k, de modo que a equação 2-3.cosx = k-4 admita solução.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ajuda!

Mensagempor e8group » Qui Abr 25, 2013 15:09

Dica :

Observe que para qualquer x real ,


1 \geq  cos(x) \geq -1 .Assim,secos(x) = L ,então

L \in [-1,1] que é equivalente dizer que , cos(x) = L \implies     1 \geq L \geq -1 .

Dada equação 2-3cos(x) = k-4, tente isolar cos(x) ,logo após este passo a resolução é semelhante ao exemplo cos(x) = L \implies ... . Post suas dúvidas se não conseguir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ajuda!

Mensagempor Jhennyfer » Qui Abr 25, 2013 16:15

Olha, eu entendi o que você fez, mas ainda não consigo resolver o exercício...
fiz uma coisa muito louca aqui, vou postar, maaaas, tenho certeza q está errado, me ajuda!

2-3cosx=k-4
3cosx=k-6
cosx=k/3-2
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ajuda!

Mensagempor e8group » Qui Abr 25, 2013 16:40

Você só errou em escrever cos(x) =  - 2 + k/2 o correto é cos(x) =   2 - k/2 .

Acompanhe :

2 - 3cos(x) =k- 4 .

Somando-se -2 em cada lado da igualdade ,segue

2 - 3cos(x)+ (-2)  = k- 4 + (-2)

[2+(-2)]  - 3cos(x) = k + [-4 + (-2)]

0 - 3cos (x) = k - 6

-3cos(x)  = k-6 .

E finalmente multiplicando-se ambos membros (-1/3) obtemos , cos(x) =   2 - k/2 .

Agora basta desenvolver a desigualdade 1 \geq  cos(x) =   2 - k/2 \geq -1 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ajuda!

Mensagempor Jhennyfer » Qui Abr 25, 2013 17:56

Mas Santhiago, retomando ali da parte
-3cos(x)=k-6
Porquê multiplica por (-1/3)??
fiz uma outra resolução.. assim,

cos(x)=k-6/-3 ====> Cos(x)=k+2

E no gabarito consta a resposta na qual: k pertence [3; 9]
e mesmo tentando desenvolver a partir do desenvolvimento das desigualdades não deu certo.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ajuda!

Mensagempor Jhennyfer » Qui Abr 25, 2013 18:00

Ps: o desenvolvimento de desigualdades citado acima é o que você postou.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: ajuda!

Mensagempor DanielFerreira » Qui Abr 25, 2013 18:08

Outra...

Desenvolvendo...

\\ 2 - 3 \cdot \cos x = k - 4 \\ - 3 \cdot \cos x = k - 6 \\ \boxed{\cos x = - \frac{k}{3} + 2}


Sabemos que - 1 \leq \cos x \leq 1, então:

\\ - 1 \leq \cos x \leq 1 \\\\ - 1 \leq - \frac{k}{3} + 2 \leq 1 \\\\\\ - 1 - 2 \leq - \frac{k}{3} \leq 1 - 2 \\\\\\ - 3 \leq - \frac{k}{3} \leq - 1 \;\;\;\;\;\; \times(- 3 \\\\ 9 \geq k \geq 3 \\\\ \boxed{\boxed{3 \leq k \leq 9}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: ajuda!

Mensagempor Jhennyfer » Qui Abr 25, 2013 18:17

Perfeito...
agora sim, entendi tudo com bastante clareza.
Obrigado!
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?