• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício {limite}

Exercício {limite}

Mensagempor Danilo » Qua Abr 10, 2013 23:16

Calcule o limite \lim_{x\rightarrow+-\infty}\frac{\sqrt[]{x + \sqrt[]{x+ \sqrt[]{x}}}}{\sqrt[]{x+1}}

A minha idéia inicial é multiplicar numerador e denominador por \frac{1}{x}. Mas não sei o que fazer com o fato de ter uma raiz dentro da outra...
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Exercício {limite}

Mensagempor young_jedi » Qui Abr 11, 2013 15:10

eu pensei da seguinte forma

\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+1}}=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\frac{x}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x\left(1+\frac{1}{\sqrt x}\right)}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt x\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\frac{x}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x\left(1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}\right)}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+\frac{x}{x}}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x\left(1+\frac{1}{x}\right)}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt x\sqrt{1+\frac{1}{x}}}

=\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{1+\frac{1}{x}}}=1

no entanto isto so vale para x tendento para + infinito porque para - infinito não existe raiz de numeros negativos
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Exercício {limite}

Mensagempor Danilo » Ter Abr 23, 2013 11:44

young_jedi escreveu:eu pensei da seguinte forma

\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+1}}=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\frac{x}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x\left(1+\frac{1}{\sqrt x}\right)}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt x\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\frac{x}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x\left(1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}\right)}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+\frac{x}{x}}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x\left(1+\frac{1}{x}\right)}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt x\sqrt{1+\frac{1}{x}}}

=\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{1+\frac{1}{x}}}=1

no entanto isto so vale para x tendento para + infinito porque para - infinito não existe raiz de numeros negativos




Valeu!!!! Entendi!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}