• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do Segundo grau

Equação do Segundo grau

Mensagempor Damaris Ribeiro » Sex Abr 19, 2013 22:21

Alguém poderia me ajuda nessa questão :\

Determine m para que a equação do segundo grau (2m+1)x^2+2x+m+1=0 tenha raízes reais tais que 0<x1<x2<4

Gabatiro : -3/2<m<-1
Damaris Ribeiro
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Abr 18, 2013 12:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação do Segundo grau

Mensagempor e8group » Sáb Abr 20, 2013 01:33

Vamos aplicar a fórmula resolvente p/ equação do segundo grau ,

x_{1,2} = \frac{- 2 \pm \sqrt{4 -4(2m+1)(m+1)}}{2(2m+1)} = \frac{-1 \pm\sqrt{1 -(2m+1)(m+1)}}{2m+1} .

(a)
\frac{-1 -\sqrt{1 -(2m+1)(m+1)}}{2m+1}

(b)
\frac{-1 +\sqrt{1 -(2m+1)(m+1)}}{2m+1} .

Os itens (a) e (b) são raízes da equação .

Como ambas soluções da equação são positivas ,por(a) vemos que obrigatoriamente2m+1 < 0 \iff m \in I_1 =(-\infty ,-1/2) (Por quê ?) .Assim ,como 2m+1 < 0 então -1 +\sqrt{1 -(2m+1)(m+1)} < 0 .Desta forma, além de termos que impor que 1 -(2m+1)(m+1) > 0 (já que há duas soluções distintas p/ equação) teremos também que tomar 1 > 1 -(2m+1)(m+1) .

Assim ,

1 -(2m+1)(m+1) > 0  \iff 0 > m > -3/2 \iff m \in I_2 = (-3/2,0) (Por favor ,faça as contas)

e

1 > 1 -(2m+1)(m+1) \iff m > -1/2 \ \text{ou} \  m < -1  \iff m \in I_3 = (-\infty,-1)\cup(-1/2,+\infty)
(Por favor ,faça as contas) .

Concluímos que m \in I_1 \cap I_2 \cap I_3 = (-3/2,-1) , ou seja ,para qualquer -3/2 <m <-1 \implies 0 < x_1 < x_2 < 4 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Equação do Segundo grau

Mensagempor e8group » Sáb Abr 20, 2013 02:53

Outra ...
Alternativamente ,pela soma S = -b/a e produto P = c/a das raízes em que a = 2m+1  , b = 2 e c = m+1 .Pela restrição ,

0 < x_1 < x_2 < 4 obtemos que ,


x_1 + x_2 > 0

e

x_1 \cdot x_2 > 0

Assim ,por soma e produto das raízes ,


x_1 + x_2= -2/(2m+1) > 0  \iff 2m+1 < 0 \iff m <-1/2 .


e

x_1 \cdot x_2 = (m+1)/(2m+ 1) > 0 que devido a m  +1/2< 0 implica m+1 < 0 e portanto m < -1 .

Para finalizar ,uma vez que há duas soluções reais e distintas ,então o discriminante b^2 -4ac= 4 - 4(2m+1)(m+1)> 0  \implies 0 > (2m+1)(m+1) - 1 = 2m^2 +3m = m(2m+3) .
Como m < - 1 ,o produto m(2m+3) é negativo sse 2m + 3 > 0 . Desenvolvendo segue o resultado do gabarito .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?