• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Exponencial- dúvida

Inequação Exponencial- dúvida

Mensagempor laura_biscaro » Ter Abr 16, 2013 23:52

Seja S o conjunto solução da inequação {\frac{5}{3}}^{-x+2} > {\frac{3}{5}}^{1-2x}. Então:
a) S=R
b) S={x\epsilonR/x<1}
c) S={x\epsilonR/x>1}
d) S={x\epsilonR/x<-1}
e) S={x\epsilonR/x>-1}
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação Exponencial- dúvida

Mensagempor e8group » Qua Abr 17, 2013 02:15

Vamos introduzir um exemplo numérico semelhante ao exercício postado .

Imagine que temos a seguinte desigualdade 2^x > (\frac{1}{2})^y = 2^{-y} (a) .

Veja que 2 = \frac{1}{\dfrac{1}{2}} = \frac{1}{2^{-1}} = (\frac{1}{2})^{-1} .

e \frac{1}{2}  = 2^{-1} .

Pergunta : Dado um y real qualquer ,qual o conjunto solução para x da desigualdade 2^x > (\frac{1}{2})^y = 2^{-y} ?

Possível justificativa para a pergunta :

Como 2 > 1 , do ponto de vista de funções ,considerando f(x) = 2^x temos que f é estritamente crescente (\forall x_1,x_2 \in D_f se x_1 > x_2  \implies  f(x_1) > f(x_2) ) . Assim , dado um y real , \{ x \in \mathbb{R} \mid x > -y \} é o conjunto solução da desigualdade .Significa que qualquer x que tomarmos no intervalo acima , satisfará a desigualdade (a) .

Suponha que y = 4 .Qualquer x em (-4,+\infty) satisfaz 2^x > 2^{-4} = \frac{1}{16} ,não é verdade ?

Agora o que acontece se ao invés de 1,2,x e y temos ,respectivamente , 3,5,-x+2 e 1 -2x ?

Dica para o exercício :

\frac{3}{5}  = \left(\frac{5}{3}\right)^{-1} (por quê ??) e 5/3 > 1 .Então ...

Tente concluir ,se não conseguir post suas dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.