• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajuda! Integral de superficie

Me ajuda! Integral de superficie

Mensagempor Jeje01 » Dom Abr 14, 2013 21:24

Integre g(x,y,z) = xyz sobre a superfície do solido retangular cortado do primeiro octante pelos planos x =a, y=b e z=c.
Jeje01
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 14, 2013 21:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia civil
Andamento: cursando

Re: Me ajuda! Integral de superficie

Mensagempor young_jedi » Seg Abr 15, 2013 21:34

como ela esta no primeiro octante então a superficie é uma caixa com face em
x=a, y=b e z=c
x=0, y=0 z=0

para as faces que estão em zero a função g(x,y,z) é igual a zero por isso na precisa calculara para as outras a integral sera

\int_{0}^{c}\int_{0}^{b}a.y.z.dy.dz+\int_{0}^{c}\int_{0}^{a}x.b.z.dx.dz+\int_{0}^{b}\int_{0}^{a}x.y.c.dx.dy

é so calcular as integrais
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.