• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(FGV-SP)

(FGV-SP)

Mensagempor laura_biscaro » Seg Abr 08, 2013 22:44

Para que a função real f(x)=\sqrt[2]{{x}^{2}-6x+k}, onde x e k são reais, seja definida para qualquer valor de x, k deverá ser um número tal que:
a) k\leq5
b)k=9
c)k=5
d)k\leq9
e)k\geq9
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (FGV-SP)

Mensagempor Russman » Seg Abr 08, 2013 23:18

É só tomar o radicando maior ou igual a zero, pois a raiz quadrada somente se define para números positivos e o zero.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (FGV-SP)

Mensagempor laura_biscaro » Seg Abr 08, 2013 23:26

então, meu resultado só ta sendo k\geq5, e a resposta é k\geq9 :s
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (FGV-SP)

Mensagempor e8group » Ter Abr 09, 2013 00:11

Observe que a expressão que estar dentro do radicando é uma polinômio do segundo grau , sendo assim ,a função f estará bem definida \iff existirem a_0 \in \mathbb{R} e a_1 > 0 tal que a equação x^2 - 6x + k pode ser escrita como (i) (x - a_0)^2 e (ii)(x - a_0)^2 + a_1 .Desenvolvendo ambas expressões , e por igualdade de polinômios ,temos que :


x^2 - 2a_0 x + a_0 ^2  = x^2 - 6x + k  \iff  \begin{cases} -2a_0 = 6 \\ k = a_0 ^2 \end{cases} .Neste caso , k = 9 .

x^2 - 2a_0 x + a_0 ^2 + a_1  = x^2 - 6x + k  \iff  \begin{cases} -2a_0 = 6 \\ k = a_0 ^2 +a_1 \end{cases} .Neste caso k = 9 + a_1 para qualquer a_1 positivo ;logo , obrigatoriamente k \geq 9 para a funçãof estar bem definida .

Outra forma seria observar que se \Delta \leq 0 ou seja , (-6)^2 - 4\cdot 1 \cdot k \leq 0 a função estaria bem definida nesta situação .

Editado alguns erros digitados ....
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: (FGV-SP)

Mensagempor anabatista » Ter Abr 09, 2013 00:31

Teriamos que {x}^{2}-6x+k\geq 0
logo \Delta={-6}^{2}-4.1.k
Como esse valor também será incluso na raiz, ele tambem devera ser maior ou igual a zero
{-6}^{2}-4.1.k\geq 0

E assim se encontra a resposta
anabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Abr 08, 2013 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: (FGV-SP)

Mensagempor laura_biscaro » Ter Abr 09, 2013 00:38

obrigada pessoal! agora eu consegui chegar na resposta :D
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Inequações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?