• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(FGV-SP)

(FGV-SP)

Mensagempor laura_biscaro » Seg Abr 08, 2013 22:44

Para que a função real f(x)=\sqrt[2]{{x}^{2}-6x+k}, onde x e k são reais, seja definida para qualquer valor de x, k deverá ser um número tal que:
a) k\leq5
b)k=9
c)k=5
d)k\leq9
e)k\geq9
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (FGV-SP)

Mensagempor Russman » Seg Abr 08, 2013 23:18

É só tomar o radicando maior ou igual a zero, pois a raiz quadrada somente se define para números positivos e o zero.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: (FGV-SP)

Mensagempor laura_biscaro » Seg Abr 08, 2013 23:26

então, meu resultado só ta sendo k\geq5, e a resposta é k\geq9 :s
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (FGV-SP)

Mensagempor e8group » Ter Abr 09, 2013 00:11

Observe que a expressão que estar dentro do radicando é uma polinômio do segundo grau , sendo assim ,a função f estará bem definida \iff existirem a_0 \in \mathbb{R} e a_1 > 0 tal que a equação x^2 - 6x + k pode ser escrita como (i) (x - a_0)^2 e (ii)(x - a_0)^2 + a_1 .Desenvolvendo ambas expressões , e por igualdade de polinômios ,temos que :


x^2 - 2a_0 x + a_0 ^2  = x^2 - 6x + k  \iff  \begin{cases} -2a_0 = 6 \\ k = a_0 ^2 \end{cases} .Neste caso , k = 9 .

x^2 - 2a_0 x + a_0 ^2 + a_1  = x^2 - 6x + k  \iff  \begin{cases} -2a_0 = 6 \\ k = a_0 ^2 +a_1 \end{cases} .Neste caso k = 9 + a_1 para qualquer a_1 positivo ;logo , obrigatoriamente k \geq 9 para a funçãof estar bem definida .

Outra forma seria observar que se \Delta \leq 0 ou seja , (-6)^2 - 4\cdot 1 \cdot k \leq 0 a função estaria bem definida nesta situação .

Editado alguns erros digitados ....
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: (FGV-SP)

Mensagempor anabatista » Ter Abr 09, 2013 00:31

Teriamos que {x}^{2}-6x+k\geq 0
logo \Delta={-6}^{2}-4.1.k
Como esse valor também será incluso na raiz, ele tambem devera ser maior ou igual a zero
{-6}^{2}-4.1.k\geq 0

E assim se encontra a resposta
anabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Abr 08, 2013 23:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: (FGV-SP)

Mensagempor laura_biscaro » Ter Abr 09, 2013 00:38

obrigada pessoal! agora eu consegui chegar na resposta :D
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Inequações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59