• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria espacial] Centros de simetria

[Geometria espacial] Centros de simetria

Mensagempor rochadapesada » Seg Abr 08, 2013 21:57

Essa questão não sei nem como começar... Uma luz por favor

Os centros de simetria das faces de um cubo de aresta a são os vértices de um poliedro cujo volume é dado por:

a){a}^{3}\sqrt{7}

b){a}^{3}\sqrt{5}

c)\frac{{a}^{3}}{12}

d)\frac{{a}^{3}\sqrt{3}}{4}

e) n.d.a
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Geometria espacial] Centros de simetria

Mensagempor young_jedi » Qua Abr 10, 2013 15:32

o poliedro e a figura em vermelho

cubo.png
cubo.png (3.61 KiB) Exibido 1970 vezes


repare que ele se trata de duas piramedes uma invertida da outra então calculando o volume de uma das piramedes encontramos o volume do poliedro sendo o dobro desta

a base das piramedes é um quadrado onde seus vertices estão nos centros das faces portanto, utilizando teorema de pitagoras vemos que o lado deste quadrado é

x^2=\left(\frac{a}{2}\right)^2+\left(\frac{a}{2}\right)^2

portanto

x=a.\frac{\sqrt2}{2}

portanto a area do quadrado é

x^2=\frac{a^2}{2}

a altura da piramede é a/2 tente calcular o volume da piramede e do poliedro e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Geometria espacial] Centros de simetria

Mensagempor rochadapesada » Qua Abr 10, 2013 16:15

Obrigado cara =D
rochadapesada
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Abr 04, 2013 22:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59