• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL] frações parciais

[INTEGRAL] frações parciais

Mensagempor FERNANDA_03 » Dom Mar 31, 2013 13:59

Olá, tentei resolver a seguinte integral pelo método de frações parciais, mas não deu certo. Alguém poderia me dar uma dica de como desenvolvê-la? Grata.
\int \frac{1}{x^2+5}dx
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [INTEGRAL] frações parciais

Mensagempor e8group » Dom Mar 31, 2013 15:41

Boa tarde .

\int \frac{1}{x^2 + 5} dx  =  \frac{1}{5} \cdot  \int \frac{1}{\left( \dfrac{x}{\sqrt{5}}\right )^2 + 1} dx .

Deixando \dfrac{x}{\sqrt{5}} = u ,temos :

\frac{1}{5} \cdot  \int \frac{1}{\left( \dfrac{x}{\sqrt{5}}\right )^2 + 1} dx  = \frac{\sqrt{5}}{5} \cdot  \int \frac{1}{ u^2 + 1} du  = \frac{\sqrt{5}}{5} \cdot arctan(u) + c = \frac{\sqrt{5}}{5} \cdot arctan(\dfrac{x}{\sqrt{5}}) + c

Se surgir dúvidas retorne .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [INTEGRAL] frações parciais

Mensagempor FERNANDA_03 » Dom Mar 31, 2013 16:38

Muito obrigada!
FERNANDA_03
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Jan 05, 2013 22:02
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)