• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[progressão Aritmética] sequência

[progressão Aritmética] sequência

Mensagempor JKS » Dom Mar 17, 2013 14:43

por favor , ajudem .. desde já agradeço.estou achando 60 :( GABARITO : 59

(puc-sp) Os Termos da sequência (10,8,11,9,12,10,13....) obedecem a uma lei de formação. Se an, em que n \epsilon  {N}^{*}, é o termo de ordem n dessa sequência, então a30+a55 é igual a :
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [progressão Aritmética] sequência

Mensagempor DanielFerreira » Dom Mar 17, 2013 18:25

Jks,
boa tarde!

Consideremos as sequências por partes:
- {10, 11, 12, 13,...}
- {8, 9, 10, 11,...}

No entanto, não devemos nos esquecer que a_1 = 10, a_2 = 8,...

Para encontrar o termo a_{30} devemos utilizar a 'segunda' sequência, pois ela fornece os termos pares, com isso:

\\ \begin{cases} a_2 = a_1 = 8 \\ a_4 = a_2 = 9 \\ r = 1 \\ a_{30} = a_{15} \\ n = 15 \end{cases} \\\\ \boxed{a_n = a_1 + (n - 1)r} \\ a_{15} = 8 + 14 \\ \boxed{\boxed{a_{15} = 22}}


Encontremos o termo a_{55} através da 1ª sequência. Mas, há um detalhe!
55 não é múltiplo de dois, por isso, não podemos dividi-lo como feito anteriormente. Resta-nos fazer uso do termo anterior, isto é, do a_54 e depois somar uma unidade, uma vez que a razão é UM!!

Segue,

\\ \begin{cases} a_1 = 10 \\ a_3 = a_2 = 11 \\ r = 1 \\ a_{54} = a_{27} \\ n = 27 \end{cases} \\\\ \boxed{a_n = a_1 + (n - 1)r} \\ a_{27} = 10 + 26 \\ \boxed{\boxed{a_{27} = 36}}


Como foi dito, devemos somar 1 ao termo encontrado, pois:

\\ a_{54} = a_{27} = 36 \\ a_{55} = a_{54} + r \\ a_{55} = 36 + 1 \\ \boxed{\boxed{a_{55} = 37}}


Por fim,

\\ a_{30} + a_{55} = \\\\ 22 + 37 \\\\ \boxed{\boxed{\boxed{\boxed{a_{30} + a_{55} = 59}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}