por laura_biscaro » Sex Mar 15, 2013 01:06
O valor da expressão y=

, é:
a)
![\sqrt[2]{2} \sqrt[2]{2}](/latexrender/pictures/a8f8ae3924f6c44624745ca9e588cae3.png)
-2
b)
![\sqrt[2]{2} \sqrt[2]{2}](/latexrender/pictures/a8f8ae3924f6c44624745ca9e588cae3.png)
+2
c)2
d)-0,75
e)

-
laura_biscaro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Fev 18, 2013 19:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sex Mar 15, 2013 07:45
Laura,
bom dia!
Seu enunciado está incompleto!
Sabe-se que:

Com isso,

À sua expressão...

Certamente
Laura, está faltando o valor de

!
Espero ter ajudado, em caso contrário, retorne!!
Att,
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por laura_biscaro » Sex Mar 15, 2013 11:55
sim, é verdade, x=
![\sqrt[2]{2} \sqrt[2]{2}](/latexrender/pictures/a8f8ae3924f6c44624745ca9e588cae3.png)
. desculpe, era 1:00 da manhã e eu tava morrendo de sono haha
entendi agora, muito obrigada

-
laura_biscaro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Fev 18, 2013 19:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Dom Mar 17, 2013 18:57
Não há de quê!
Atentamente,
Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida na Fatoração
por runksoneck » Sáb Fev 19, 2011 18:30
- 2 Respostas
- 4252 Exibições
- Última mensagem por runksoneck

Ter Fev 22, 2011 09:57
Pedidos
-
- dúvida fatoração
por Andrewo » Ter Mar 13, 2012 16:51
- 5 Respostas
- 2685 Exibições
- Última mensagem por LuizAquino

Qua Mar 28, 2012 17:19
Álgebra Elementar
-
- Fatoração - Dúvida
por Danilo » Sáb Mar 09, 2013 12:16
- 1 Respostas
- 1372 Exibições
- Última mensagem por e8group

Sáb Mar 09, 2013 13:16
Álgebra Elementar
-
- [Fatoração] Duvida.
por replay » Sex Mar 15, 2013 12:43
- 7 Respostas
- 4068 Exibições
- Última mensagem por timoteo

Qui Mar 21, 2013 12:23
Álgebra Elementar
-
- [Fatoração] Dúvida em exercício
por Antonio Unwisser » Sáb Ago 30, 2014 21:36
- 3 Respostas
- 2166 Exibições
- Última mensagem por DanielFerreira

Dom Set 07, 2014 21:22
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.