por Glauber_Garcia » Qua Nov 28, 2012 21:25
Determine os valores reais de x e y?
Determine os valores de x e y, para que os números complexos sejam imaginários puros.
A) Z= 2x + 34y i
B) W= (1-2y) + 10
-
Glauber_Garcia
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Nov 28, 2012 21:11
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fraol » Qua Dez 12, 2012 20:54
Olá, boa noite.
Vamos iniciar pela parte conceitual: Você sabe o que significa um número complexo ser imaginário puro?
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por Direito » Qua Mar 13, 2013 01:15
lembre-se imaginário puro é o mesmo que só quero imagem na formula. para conseguir isso devemos igualar o real a zero obtendo assim uma fórmula com o único imaginário, veja:
Z= 2x + 34y i >>>>>>>> real = 2x ...... imagem = 34 y ........ # = SIGNIFICA DIFERENTE
RESOLUÇÃO :
2X = 0
X= 0/2
X= 0
....//.....//....//
34Y # 0
Y# 0/34
Y# 0
...//.....//......//
B) W= (1-2y) + 10 SE (1-2y) FOR IMAGEM FICARÁ ASSIM :
1-2Y # 0
-2Y # -1
Y# 1/2
OBS: NA QUESTÃO ALTERNATIVA (B) FIQUEI SEM ENTENDER SE É 10X OU É REAL O A IMAGEM , POIS VOCÊ NÃO COLOCOU O i ,PORÉM ,SIGA O EXEMPLO DA QUESTÃO ALTERNATIVA (A) QUE DARÁ CERTO.
BONS ESTUDOS E FIQUE COM DEUS!!!
-
Direito
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qua Mar 13, 2013 00:14
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão - números complexos
por Danilo » Sex Ago 03, 2012 02:27
- 1 Respostas
- 1971 Exibições
- Última mensagem por e8group

Sex Ago 03, 2012 11:15
Números Complexos
-
- [números complexos] questão unicentro
por Flavia R » Qui Ago 25, 2011 11:39
- 4 Respostas
- 3389 Exibições
- Última mensagem por Flavia R

Qui Ago 25, 2011 21:23
Números Complexos
-
- [Números complexos] Dúvida em questão
por iceman » Qui Mai 10, 2012 18:46
- 3 Respostas
- 2613 Exibições
- Última mensagem por fraol

Qui Mai 10, 2012 19:41
Números Complexos
-
- Números complexos - Questão chata
por iceman » Dom Mai 27, 2012 18:08
- 13 Respostas
- 7164 Exibições
- Última mensagem por DanielFerreira

Dom Mai 27, 2012 21:26
Números Complexos
-
- [Números Complexos] Questão envolvendo Potenciação
por everton_stark » Sáb Dez 26, 2015 22:49
- 1 Respostas
- 8605 Exibições
- Última mensagem por rzarour

Sex Abr 01, 2016 07:18
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.