• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajud na questão

Ajud na questão

Mensagempor GABRIELA » Ter Set 29, 2009 16:22

calcular a distancia entre os pontos R (5,1) e S (7,9):


d RS=\sqrt{(7-5)^2 + {(9-1)^2

d RS = \sqrt{(2)^2 + {(8)^2

d RS = 2\sqrt  {(64)

d RS = 2\sqrt  {(8)

Só que não sei onde estou errando...Podem me mostrar o erRo?
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ajud na questão

Mensagempor Molina » Qua Set 30, 2009 00:56

Boa noite, Gabriela.

O erro está desta linha:

GABRIELA escreveu:d RS = \sqrt{(2)^2 + {(8)^2


para esta:

GABRIELA escreveu:d RS = 2\sqrt  {(64)


Você só pode "tirar" da raiz, quando tiver uma multiplicação.

Então primeiramente faça a soma dos números que está dentro da raiz e depois fatore, ok?

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Ajud na questão

Mensagempor Cleyson007 » Qua Set 30, 2009 18:40

Boa tarde!

Fómula da distância entre os pontos: d(R,S)=\sqrt[2]({{{x}_{2}-{x}_{1}})^{2}+{(y}_{2}-{y}_{1})^2

Quanto à resolução: d(R,S)=\sqrt[2]({7-5})^{2}+({9-1})^{2}}

d(R,S)=\sqrt[2]{4+64}

d(R,S)=\sqrt[2]{68}

Gabriela, ao chegar aqui, você deve fatorar o 68

d(R,S)=\sqrt[2]{{2}^{2}.17}

Logo, d(R,S)=2\sqrt[2]{17}

Espero que tenha entendido!

Até mais.

Bons estudos!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Ajud na questão

Mensagempor GABRIELA » Qua Set 30, 2009 20:44

ahhh entendi! Eu parei no 17 e fiquei sem saber o que fazia.hahuaha :y:
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: