• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Definição de função continua

Definição de função continua

Mensagempor Isaac Soares » Sáb Dez 29, 2012 02:58

Imagem


Olá pessoal não estou conseguindo entender essa definição de função continua , consegui resolver todos os exercícios que o professor passou no entanto sinto que não entendi como deveria
Anexos
409410_301815239939522_816868980_n.jpg
409410_301815239939522_816868980_n.jpg (9.11 KiB) Exibido 1409 vezes
Isaac Soares
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Dez 29, 2012 02:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Definição de função continua

Mensagempor fraol » Seg Fev 11, 2013 18:20

Olá boa tarde,

A questão está um pouco velha mas, mesmo assim, vamos lá:

A ideia de continuidade está relacionada com vizinhança. Sem muita formalidade, essa definição quer dizer que se para todos os x no domínio da função e na vizinhança de um determinado x_0 existirem os f(x) correspondentes, na imagem de f e na vizinhança de f(x_0) então a função é contínua em x_0. O delta e o epsilon na sentença da definição servem para determinar exatamente qual é a vizinhança que está se tratando.

Eu fiz uma figura. Nela usei um delta de 0.1 para exemplificar:

cont-1.png


Nesse caso o x_0 = 1. Veja que todos os x na vizinhança \delta de 1 possuem um f(x) na vizinhança \epsilon de f(1).
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.