• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Moedas

Moedas

Mensagempor andersonsouza » Seg Fev 11, 2013 16:16

Tenho 20 moedas. Algumas delas são de 20 centavos e outras de 10 centavos. Se as moedas de 10 centavos que eu tenho fossem as de 20, e as de 20 fossem as de 10, eu teria 60 centavos a mais do que eu tenho agora. Quantas moedas de 10 e quantas moedas de 20 eu tenho?

SOLUÇÃO POR SISTEMAS DE EQUAÇÕES

x + y = 20 => x = 20 - y

10x + 20y = 20x + 10y - 60

10(20 - y) + 20y = 20(20 - y) + 10y - 60

200 - 10y + 20y = 400 - 20y + 10y -60

10y + 10y = 400 - 200 - 60

y = 140 / 20 => y = 7

x = 20 - 7 => x = 13


Há alguma solução sem uso de sistemas??
andersonsouza
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 09, 2013 11:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Moedas

Mensagempor young_jedi » Seg Fev 11, 2013 20:47

se voce tem vinte moedas e x são de 10, então 20-x são de vinte, equancionando

x.10+(20-x).20+60=x.20+(20-x).10

460-10x=10x+200

460-200=10x+10x

20x=260

x=\frac{260}{20}

x=13
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Moedas

Mensagempor andersonsouza » Seg Fev 11, 2013 23:46

E neste, amigo. Tem como fazer algo parecido com os problemas da bala?

Tentarei rascunhar algo aqui, mas aguardo, mais uma vez, sua ajuda =)
andersonsouza
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 09, 2013 11:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Moedas

Mensagempor young_jedi » Ter Fev 12, 2013 11:15

então, esse eu achei mais complicado um pouco

pensamos o seguinte se ao transformar cada moeda de 10 em 20 e cada de 20 em moedas de 10 se a quantidade de moedas for igauis nos continuamos com o mesmo montante, mais se o numero de moedas de 10 for maior, para cada uma dessas moedas a mais nos ganhamos mais 10 centavos na tranformação, então a quantidade de moedas de 10 em excesso vezes 10 centavos da o nosso ganho total então

\frac{60}{10}=6

portanto nos temos que existem 6 moedas de 10 a mais doque de 20, se nos temos um total de 20 moedas
então 20-6=14

portanto 14 é o dobro da quantia de moedas de 20, então

\frac{14}{2}=7

portanto 7 é a quantidade de moedas de 20 e a quantidade de moedas de 10 é
7+6=13

pareceu meio confuso, mais foi a melhor maneira que eu encontrei
se voce encontrar uma melhor, por favor, compartilhe.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: